고마바이오텍(주)
Category 전체보기
전기영동 > 단백질 전기영동 전기영동 > 헥산 전기영동
Cat. No.전체보기

검색 결과가 없습니다.

Product전체보기

검색 결과가 없습니다.

Brand전체보기

검색 결과가 없습니다.

제품 상세
Cell Transformation Assay Kit 이미지

Cell Transformation Assay Kit

CytoSelect Cell Transformation Assay Kit는 semisolid agar에서 7-8일간 배양 후 cell transformation을 측정합니다. Colorimetric 및 Fluorometric format으로 제공되며 Cell Recovery Compatible Kit는 Transformed cell을 회수할 수 있습니다.

특징

 

  • semisolid agar에서 7-8일간 배양 후, cell transformation을 측정하는 제품입니다.  
  • 기존에 3-4주씩 걸리던 전통적인 soft agar colony 방식에 비해 좀더 신속하고 정확하게 cell transformation과 growth를 측정합니다.
  • 매뉴얼로 cell counting을 하지 않으므로, 정확한 정량이 가능합니다.
  • Cell colony 정량까지 약 6-8일 정도 소요됩니다. (기존 3-4주)



종류

  

CytoSelect™ 96-Well Cell Transformation Assay (Soft Agar Colony Formation) (#CBA-130)


  • 기존 Soft agar assay에 비해 빠르고 정확성이 향상되었습니다.
  • Cell은 semisolid agar matrix 에서 1주 정도 배양 후, lysis를 거쳐 CyQuant® GR  형광 dye를 통해 fluorometric plate reader에서 측정됩니다.
  • Transformed cell은 회수되지 않습니다. (회수용으로는 Cell Recovery Compatible assay kit을 사용하세요.)

 


 

 

 


CytoSelect™ 96-Well Cell Transformation Assay (Cell Recovery Compatible) (#CBA-135 / CBA-140)

  • Modified soft agar를 사용함으로써, cell colony를 회수해서 downstream analysis에 이용할 수 있습니다.
  • Transformed cells은 protein/DNA array analysis나 cancer vaccine development 같은 이후 연구를 위해 회수가 가능합니다.
  • Semisolid agar matrix 에서 1주일 정도 배양된 세포들은 fluorometric plate reader에서 측정되거나,  3D culture medium으로부터 회수가 가능합니다.
  • Colorimetric (#CBA-135) 및 fluorometric (#CBA-140) format으로 제공됩니다.
    



사용 논문

CBA-130  
    1. Andriolo, G. et al. (2021). GMP-Grade Methods for Cardiac Progenitor Cells: Cell Bank Production and Quality Control. Methods Mol Biol. doi: 10.1007/7651_2020_286.
    2. Tan, T.T. et al. (2021). Assessment of Tumorigenic Potential in Mesenchymal-Stem/Stromal-Cell-Derived Small Extracellular Vesicles (MSC-sEV). Pharmaceuticals14(4):345. doi: 10.3390/ph14040345.
    3. Lo, E.K.K. et al. (2021). Low dose of zearalenone elevated colon cancer cell growth through G protein-coupled estrogenic receptor. Sci Rep11(1):7403. doi: 10.1038/s41598-021-86788-w.
    4. Park, S. et al. (2021). Cerebral Cavernous Malformation 1 Determines YAP/TAZ Signaling-Dependent Metastatic Hallmarks of Prostate Cancer Cells. Cancers (Basel)13(5):1125. doi: 10.3390/cancers13051125.
    5. Huang, S.B. et al. (2021). Androgen deprivation-induced elevated nuclear SIRT1 promotes prostate tumor cell survival by reactivation of AR signaling. Cancer Lett. doi: 10.1016/j.canlet.2021.02.008.
    6. Gao, C. et al. (2020). High intratumoral expression of eIF4A1 promotes epithelial-to-mesenchymal transition and predicts unfavorable prognosis in gastric cancer. Acta Biochim Biophys Sin (Shanghai). pii: gmz168. doi: 10.1093/abbs/gmz168.
    7. Eckerdt, F.D. et al. (2020). Combined PI3Kα-mTOR Targeting of Glioma Stem Cells. Sci Rep10(1):21873. doi: 10.1038/s41598-020-78788-z.
    8. Byun, H.J. et al. (2020). LUCAT1 Epigenetically Downregulates the Tumor Suppressor Genes CXXC4 and SFRP2 in Gastric Cancer. Yonsei Med J. 61(11):923-934. doi: 10.3349/ymj.2020.61.11.923.
    9. Seo, H.G. et al. (2020). Mutual regulation between OGT and XIAP to control colon cancer cell growth and invasion. Cell Death Dis11(9):815. doi: 10.1038/s41419-020-02999-5.
    10. Chen, J. et al. (2020). Chrysin serves as a novel inhibitor of DGKα/FAK interaction to suppress the malignancy of esophageal squamous cell carcinoma (ESCC). Acta Pharm Sin B. doi: 10.1016/j.apsb.2020.07.011.
    11. Inoue, S. et al. (2020). Diffuse mesothelin expression leads to worse prognosis through enhanced cellular proliferation in colorectal cancer. Oncol Lett19:1741-1750. doi: 10.3892/ol.2020.11290.
    12. Kawai, S. et al. (2020). Three-dimensional culture models mimic colon cancer heterogeneity induced by different microenvironments. Sci Rep10(1):3156. doi: 10.1038/s41598-020-60145-9.
    13. Kisin, E. R. et al. (2020). Enhanced morphological transformation of human lung epithelial cells by continuous exposure to cellulose nanocrystals. Chemosphere. doi: 10.1016/j.chemosphere.2020.126170.
    14. Queckbörner, S. et al. (2020). Endometrial stromal cells exhibit a distinct phenotypic and immunomodulatory profile. Stem Cell Res Ther11(1):15. doi: 10.1186/s13287-019-1496-2.
    15. Song, S. et al. (2019). Cancer Stem Cells of Diffuse Large B Cell Lymphoma Are Not Enriched in the CD45+CD19- cells but in the ALDHhigh Cells. J. Cancer. doi: 10.7150/jca.35000.
    16. Yang, B. et al. (2019). Stopping transformed cancer cell growth by rigidity sensing. Nat Mater. doi: 10.1038/s41563-019-0507-0.
    17. Speth, J.M. et al. (2019). Alveolar macrophage secretion of vesicular SOCS3 represents a platform for lung cancer therapeutics. JCI Insight4(20). pii: 131340. doi: 10.1172/jci.insight.131340.
    18. Kim, D. et al. (2019). Anticancer effect of XAV939 is observed by inhibiting lactose dehydrogenase A in a 3‑dimensional culture of colorectal cancer cells. Oncology Letters. doi: 10.3892/ol.2019.10813.
    19. Copeland, B.T. et al. (2019). Factors that influence the androgen receptor cistrome in benign and malignant prostate cells. Mol Oncol. doi: 10.1002/1878-0261.12572.
    20. Oliveira-Mateos, C. et al. (2019). The transcribed pseudogene RPSAP52 enhances the oncofetal HMGA2-IGF2BP2-RAS axis through LIN28B-dependent and independent let-7 inhibition. Nat Commun. 10(1):3979. doi: 10.1038/s41467-019-11910-6.
    21. Fukuchi, H. et al. (2019). Forkhead box B2 inhibits the malignant characteristics of the pancreatic cancer cell line Panc-1 in vitro. Genes Cells. doi: 10.1111/gtc.12717.
    22. Salgia, M.M. et al. (2019). Different roles of peroxisome proliferator-activated receptor gamma isoforms in prostate cancer. Am J Clin Exp Urol7(3):98-109.   
    23. Sceberras, V. et al. (2019). Preclinical study for treatment of hypospadias by advanced therapy medicinal products. World J Urol. doi: 10.1007/s00345-019-02864-x.
    24. Eckerdt, F. et al. (2019). Potent Antineoplastic Effects of Combined PI3Kα-MNK Inhibition in Medulloblastoma. Mol Cancer Res. doi: 10.1158/1541-7786.MCR-18-1193.
    25. Zhao, H. et al. (2019). The Effect of Endothelial Cells on UVB-induced DNA Damage and Transformation of Keratinocytes In 3D Polycaprolactone Scaffold Co-culture System. Photochem Photobiol95(1):338-344. doi: 10.1111/php.13006.
    26. He, C. et al. (2019). YAP1-LATS2 feedback loop dictates senescent or malignant cell fate to maintain tissue homeostasis. EMBO Rep20(3). pii: e44948. doi: 10.15252/embr.201744948.
    27. Ito, E. et al. (2019). Tumorigenicity assay essential for facilitating safety studies of hiPSC-derived cardiomyocytes for clinical application. Sci Rep9(1):1881. doi: 10.1038/s41598-018-38325-5.
    28. Bunda, S. et al. (2019). CIC protein instability contributes to tumorigenesis in glioblastoma. Nat Commun10(1):661. doi: 10.1038/s41467-018-08087-9.
    29. Gökmen-Polar, Y. et al. (2019). Splicing factor ESRP1 controls ER-positive breast cancer by altering metabolic pathways. EMBO Rep20(2). pii: e46078. doi: 10.15252/embr.201846078.
    30. Koh, B. et al. (2019). Effect of fibroblast co-culture on the proliferation, viability and drug response of colon cancer cells. Oncol Lett17(2):2409-2417. doi: 10.3892/ol.2018.9836.
CBA-135
CBA-140
 
    1. Buranarom, A. et al. (2021). Dichloromethane increases mutagenic DNA damage and transformation ability in cholangiocytes and enhances metastatic potential in cholangiocarcinoma cell lines. Chem Biol Interact. doi: 10.1016/j.cbi.2021.109580 (#CBA-135).
    2. Nehme, Z. et al. (2021). Polyploid giant cancer cells, stemness and epithelial-mesenchymal plasticity elicited by human cytomegalovirus. Oncogene. doi: 10.1038/s41388-021-01715-7 (#CBA-135).
    3. Andrade, F. et al. (2021). Polymeric micelles targeted against CD44v6 receptor increase niclosamide efficacy against colorectal cancer stem cells and reduce circulating tumor cells in vivo. J Control Release331:198-212. doi: 10.1016/j.jconrel.2021.01.022 (#CBA-135).
    4. Wakae, K. et al. (2020). EBV-LMP1 induces APOBEC3s and mitochondrial DNA hypermutation in nasopharyngeal cancer. Cancer Med. doi: 10.1002/cam4.3357 (#CBA-135).
    5. Lv, W. et al. (2020). Reprogramming of Ovarian Granulosa Cells by YAP1 Leads to Development of High-Grade Cancer with Mesenchymal Lineage and Serous Features. Sci Bull. doi: 10.1016/j.scib.2020.03.040 (#CBA-135).
    6. Murata, M. et al. (2020). OVOL2-Mediated ZEB1 Downregulation May Prevent Promotion of Actinic Keratosis to Cutaneous Squamous Cell Carcinoma. J Clin Med9(3). pii: E618. doi: 10.3390/jcm9030618 (#CBA-135).
    7. Hernandez, D.M. et al. (2020). IPF pathogenesis is dependent upon TGFβ induction of IGF-1. FASEB J. doi: 10.1096/fj.201901719RR (#CBA-135).
    8. Sand, A. et al. (2019). WEE1 inhibitor, AZD1775, overcomes trastuzumab resistance by targeting cancer stem-like properties in HER2-positive breast cancer. Cancer Lett472:119-131. doi: 10.1016/j.canlet.2019.12.023 (#CBA-135).
    9. Lim, S. et al. (2019). Targeting the interaction of AIMP2-DX2 with HSP70 suppresses cancer development. Nat Chem Biol16(1):31-41. doi: 10.1038/s41589-019-0415-2 (#CBA-135).
    10. Ha, Y. et al. (2019). Induction of Lysosome‐associated Protein Transmembrane 4 Beta via Sulfatase 2 Enhances Autophagic Flux in Liver Cancer Cells. Hepatol Commun. doi: 10.1002/hep4.1429 (#CBA-135).
    11. Mawaribuchi, S, et al. (2019). The rBC2LCN-positive subpopulation of PC-3 cells exhibits cancer stem-like properties. Biochem Biophys Res Commun. pii: S0006-291X(19)30994-5. doi: 10.1016/j.bbrc.2019.05.108 (#CBA-135).
    12. Oushy, S. et al. (2018). Glioblastoma multiforme-derived extracellular vesicles drive normal astrocytes towards a tumour-enhancing phenotype. Philos Trans R Soc Lond B Biol Sci373(1737). pii: 20160477. doi: 10.1098/rstb.2016.0477 (#CBA-135).
    13. Kumar, A. et al. (2018). The Human Cytomegalovirus Strain DB Activates Oncogenic Pathways in Mammary Epithelial Cells. EBioMedicine30:167-183. doi: 10.1016/j.ebiom.2018.03.015 (#CBA-135).
    14. van der Toorn, M. et al. (2018). The biological effects of long-term exposure of human bronchial epithelial cells to total particulate matter from a candidate modified-risk tobacco product. Toxicol In Vitro50:95-108. doi: 10.1016/j.tiv.2018.02.019 (#CBA-140).
    15. Lim, S.K. et al. (2016). Wnt signaling promotes breast cancer by blocking ITCH-mediated degradation of YAP/TZA transcriptional coactivator WBP2. Cancer Res. 76:6278-6289 (#CBA-135).
    16. Kumar, A. et al. (2016). Tumor control by human cytomegalovirus in a murine model of hepatocellular carcinoma. Mol Therdoi:10.1038/mto.2016.12 (#CBA-135).
    17. Montalbano, M. et al. (2016). Modeling of hepatocytes proliferation isolated from proximal and distal zones from human hepatocellular carcinoma lesion. PLoS One 11:e0153613 (#CBA-140).
    18. Mardin, B. R. et al. (2015). A cell-based model system links chromothripsis with hyperploidyMol Syst Biol. 11:828 (#CBA-135).
    19. Monot, M. et al. (2015). Early steps of Jaagsiekte sheep retrovirus-mediated cell transformation involve the interaction between env and the RALBP1 cellular protein. Virol. 89:8462-8473 (#CBA-135).
    20. Bon, H. et al. (2015). Salt-inducible kinase 2 regulates mitotic progression and transcription in prostate cancer. Mol Cancer Res13:620-635 (#CBA-135).
    21. Fatemi, M. et al. (2014). Epigenetic silencing of CHD5, a novel tumor-suppressor gene, occurs in early colorectal cancer stages. Cancer120:172-180 (#CBA-135).
    22. Park, H. et al. (2014). Distinct roles of DKK1 and DKK2 in tumor angiogenesis.  Angiogenesis. 17:221-234 (#CBA-135).
    23. Wang, X. et al. (2014).  Commensal Bacteria Drive Endogenous Transformation and Tumour Stem Cell Marker Expression Through a Bystander Effect. Gut. 10.1136/gutjnl-2014-307213 (#CBA-135).
    24. Bottero, V. et al. (2013). Kaposi's Sarcoma-Associated Herpesvirus-Positive Primary Effusion Lymphoma Tumor Formation in NOD/SCID Mice Is Inhibited by Neomycin and Neamine Blocking Angiogenin's Nuclear Translocation. J. Virol87:11806-11820 (#CBA-135).
    25. Singh, R. et al. (2013). Increasing the Complexity of Chromatin: Functionally Distinct Roles for Replication-Dependent Histone H2A Isoforms in Cell Proliferation and CarcinogenesisNucleic Acids Res. 10.1093/nar/gkt736 (#CBA-135).
    26. Shukla, A. et al. (2013). Extracellular Signal–Regulated Kinase 5: A Potential Therapeutic Target for Malignant MesotheliomasClin. Cancer Res19:2071-2083 (#CBA-135).
    27. Niccoli, S. et al. (2012).The Asian-American E6 Variant Protein of Human Papillomavirus 16 Alone Is Sufficient To Promote Immortalization, Transformation, and Migration of Primary Human Foreskin Keratinocytes. J. Virol. 86:12384-12396 (#CBA-135).
    28. Hong, S.W. et al. (2012). Ring Finger Protein 149 Is an E3 Ubiquitin Ligase Active on Wild-type v-Raf Murine Sarcoma Viral Oncogene Homolog B1 (BRAF). J. BiolChem287:24017-24025 (#CBA-135).
    29. Lee, H.J. et al. (2012). Chemokine (C-X-C Motif) Ligand 12 Is Associated with Gallbladder Carcinoma Progression and Is a Novel Independent Poor Prognostic Factor. Clin. Cancer. Res18:3270-3280 (#CBA-135). 
    30. Chapeau, E.A. et al.(2012).Ecotropic Viral Integration Site 1 (EVI1) Regulates Multiple Cellular Processes Important for Cancer and is a Synergistic Partner for FOS Protein in Invasive Tumors. Proc Natl Acad Sci 109:2168-2173.(#CBA-135)

주문정보

주문정보 - Cat No, PRODUCT, SIZE, 수량 등 항목으로 구성되어있습니다.
  Product Cat.No. Size Maker Qty Data Sheet MSDS
CytoSelect™ 96-well Cell Transformation Assay CBA-130 96 assays CELL BIOLABS
CytoSelect™ 96-well Cell Transformation Assay CBA-130-5 5x96 assays CELL BIOLABS
CytoSelect™ Cell Transformation Assay (Cell Recovery Compatible), Colorimetric CBA-135-5 5x96 assays CELL BIOLABS
CytoSelect™ Cell Transformation Assay (Cell Recovery Compatible), Colorimetric CBA-135 96 assays CELL BIOLABS
CytoSelect™ Cell Transformation Assay (Cell Recovery Compatible), Fluorometric CBA-140-5 5x96 assays CELL BIOLABS
CytoSelect™ Cell Transformation Assay (Cell Recovery Compatible), Fluorometric CBA-140 96 assays CELL BIOLABS
Maker
CELL BIOLABS
Cat.No.
CBA-130
Product
CytoSelect™ 96-well Cell Transformation Assay
Size
96 assays
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
CBA-130-5
Product
CytoSelect™ 96-well Cell Transformation Assay
Size
5x96 assays
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
CBA-135-5
Product
CytoSelect™ Cell Transformation Assay (Cell Recovery Compatible), Colorimetric
Size
5x96 assays
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
CBA-135
Product
CytoSelect™ Cell Transformation Assay (Cell Recovery Compatible), Colorimetric
Size
96 assays
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
CBA-140-5
Product
CytoSelect™ Cell Transformation Assay (Cell Recovery Compatible), Fluorometric
Size
5x96 assays
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
CBA-140
Product
CytoSelect™ Cell Transformation Assay (Cell Recovery Compatible), Fluorometric
Size
96 assays
Qty
Data Sheet
MSDS

추천제품

자료

웨비나/Video

TOP

제품 문의

0.5 ml Elite Pre-stained Protein Ladder (2 x 0.25 ml) PAL-EPL-500 0.5ml 500
Maker
Cat.No.
Product
Size
Qty
Data Sheet
MSDS

로그인

로그인