고마바이오텍(주)
Category 전체보기
전기영동 > 단백질 전기영동 전기영동 > 헥산 전기영동
Cat. No.전체보기

검색 결과가 없습니다.

Product전체보기

검색 결과가 없습니다.

Brand전체보기

검색 결과가 없습니다.

제품 상세
세포 노화 측정 | Cellular Senescence Assays 이미지

세포 노화 측정 | Cellular Senescence Assays

Cellular Senescence Assay/Detection Kit 와 Cellular Senescence Staining Kit 는 cell에 존재하는 Senescence Associated (SA) ß-galactosidase (SA-β-Gal)가 X-gal을 가수분해 하는 정도를 측정함으로써 세포 노화상태를 측정합니다.

Cellular Senescence Detection Kit (SA-β-Gal Staining) (#CBA-230)

 

  • 세포내 대사는 진행되지만 증식과 분열이 멈추는 노화상태 (Cellular Senescence)를 측정하는 Kit 입니다.
  • Senescence Associated ß-galactosidase (SA-β-Gal)에 의한 X-gal의 가수분해를 시각적으로 확인함으로써 노화상태의 cell을 모니터링 합니다.
  • blue로 염색된 노화된 세포를 현미경으로 관찰합니다.
  • Kit  구성 :
    - 100X Fixing Solution
    - Staining Solution A
    - Staining Solution B
    - Staining Solution C
    - Staining Solution D
    - X-gal Solution

 



96-Well Cellular Senescence Assay Kit (#CBA-231)


  • 형광 기질을 사용하여 SA-ß-Gal의 활성을 측정하여 세포 노화를 결정하는 Kit 입니다.
  • SA-ß-Galactosidase  활성 결정과 샘플의 정규화를 위해 cell lysate를 사용합니다. 
  • blue로 염색된 노화된 세포를 형광 plate reader로 측정합니다.
  • Kit  구성 :
    - 2X Cell Lysis Buffer
    - 2X Reaction Buffer
    - SA-ß-Gal Substrate (20X)
    - Stop Solution



SA-ß-Gal activity in Senescent Human Lung Fibroblast HFL-1 Cells. Normal HFL-1 cells with different passage numbers were lysed. Lysates were allowed to incubate with SA-ß-Gal Substrate for 1 hr at 37ºC. 

 

 

 

Quantitative Cellular Senescence Assay (#CBA-232) 

 
  • 무독성 형광 기질을 사용하여 SA-ß-Gal 활성을 측정합니다. 
  • 보다 정량적으로 측정하기 위해 유세포 분석을 이용합니다. 
  • 35mm dish에서 최대 10번의 assay를 진행할 수 있는 양의 시약이 제공됩니다.
  • blue로 염색된 노화된 세포를 flow cytometry나 epifluorescence microscope로 측정합니다. 
  • 구성 :
    - Cell Pretreatment Solution (1000X)
    - SA-ß-Gal Substrate (200X)

 

  

 

 

사용 논문 

 

CBA-230  
    1. Jenuit, M. et al (2021). Establishment and Cryopreservation of Fibroblast Cell Line from a Sumatran Rhinoceros (Dicerorhinus sumatrensis). J. Sustain. Sci. Manag16(4):85-98. doi: 10.46754/jssm.2021.06.008.
    2. Ho, D.H. et al. (2021). LRRK2 Kinase Inhibitor Rejuvenates Oxidative Stress-Induced Cellular Senescence in Neuronal Cells. Oxid Med Cell Longev. doi: 10.1155/2021/9969842.
    3. Cui, Z. et al. (2021). Effect of the traditional Chinese medicine Pinggan-Qianyang decoction on SIRT1-PTEN signaling in vascular aging in spontaneously hypertensive rats. Hypertens Res. doi: 10.1038/s41440-021-00682-6.
    4. Zhang, Y. et al. (2021). Salidroside Ameliorates Vascular Endothelial Cell Senescence through Downregulation of KLF4. J Biosci Med (Irvine)9(2):21-32. doi: 10.4236/jbm.2021.92003.
    5. Kim, S.N. et al. (2020). Culturing at Low Cell Density Delays Cellular Senescence of Human Bone Marrow-Derived Mesenchymal Stem Cells in Long-Term Cultures. Int J Stem Cells. doi: 10.15283/ijsc20078.
    6. Baek, A.R. et al. (2020). Spermidine attenuates bleomycin-induced lung fibrosis by inducing autophagy and inhibiting endoplasmic reticulum stress (ERS)-induced cell death in mice. Exp Mol Med. doi: 10.1038/s12276-020-00545-z.
    7. Hwang, S.G. et al. (2020). Cold atmospheric plasma prevents wrinkle formation via an anti-aging process. Plasma Med. doi: 10.1615/PlasmaMed.2020034810.
    8. Madonna, R. et al. (2020). Empagliflozin reduces the senescence of cardiac stromal cells and improves cardiac function in a murine model of diabetes. J Cell Mol Med. doi: 10.1111/jcmm.15699.
    9. Takei, Y. et al. (2020). Quality assessment tests for tumorigenicity of human iPS cell-derived cartilage. Sci Rep10(1):12794. doi: 10.1038/s41598-020-69641-4.
    10. Azmi, S.M. et al. (2020). Human umbilical cord-mesenchymal stem cells: a promising strategy for corneal epithelial regeneration. Regen Med. doi: 10.2217/rme-2019-0103.
    11. Yamazaki, H. et al. (2020). Ribosome binding protein GCN1 regulates the cell cycle and cell proliferation and is essential for the embryonic development of mice. PLoS Genet16(4):e1008693. doi: 10.1371/journal.pgen.1008693.
    12. Sugimoto, H. et al. (2020). Primary culture of mouse adipose and fibrous synovial fibroblasts under normoxic and hypoxic conditions. Biomed Res41(1):43-51. doi: 10.2220/biomedres.41.43.
    13. Sogawa, K. et al. (2020). Effects of continuous exposure to low concentration of ClO2 gas on the growth, viability, and maintenance of undifferentiated MSCs in long-term cultures. Regen Ther14:184–190. doi: 10.1016/j.reth.2019.12.007.
    14. Tan, J. et al. (2019). An R-loop-initiated CSB-RAD52-POLD3 pathway suppresses ROS-induced telomeric DNA breaks. Nucleic Acids Res. pii: gkz1114. doi: 10.1093/nar/gkz1114.
    15. O'Hara, S.P. et al. (2019). The transcription factor ETS1 promotes apoptosis resistance of senescent cholangiocytes by epigenetically up-regulating the apoptosis suppressor BCL2L1. J Biol Chem. pii: jbc.RA119.010176. doi: 10.1074/jbc.RA119.010176.
    16. Cilibrasi, C.  et al. (2019). A Ploidy Increase Promotes Sensitivity of Glioma Stem Cells to Aurora Kinases Inhibition. Journal of Oncology. doi: 10.1155/2019/9014045.
    17. Canugovi, C. et al. (2019). Increased mitochondrial NADPH oxidase 4 (NOX4) expression in aging is a causative factor in aortic stiffening. Redox Biology. doi:10.1016/j.redox.2019.10128
    18. Hong, S.H. et al. (2019). Stem cell passage affects directional migration of stem cells in electrotaxis. Stem Cell Research. 101475. doi:10.1016/j.scr.2019.101475.
    19. Kim, Y.Y. et al. (2019). Modulatory Effects of Single and Complex Vitamins on the In Vitro Growth of Murine Ovarian Follicles. Tissue Engineering and Regenerative Medicine. doi:10.1007/s13770-019-00188-w.
    20. Fang, B. et al. (2019). The effects of mechanical stretch on the biological characteristics of human adipose-derived stem cells. J Cell Mol Med. doi: 10.1111/jcmm.14314.
    21. Tominaga, T. et al. (2019). Senescence-associated-β-galactosidase staining following traumatic brain injury in the mouse cerebrum. PLoS One14(3):e0213673. doi: 10.1371/journal.pone.0213673.
    22. Cho, S.Y. et al. (2019). Oxytocin Alleviates Cellular Senescence through Oxytocin Receptor-Mediated ERK/Nrf2 Signalling. Br J Dermatol. doi: 10.1111/bjd.17824.
    23. Odagiri, N. et al. (2018). Involvement of ERK1/2 activation in the gene expression of senescence-associated secretory factors in human hepatic stellate cells. Mol Cell Biochem. doi: 10.1007/s11010-018-3466-x.
    24. Park, M.J. et al. (2018). Dexamethasone Induces a Specific Form of Ramified Dysfunctional Microglia. Mol Neurobiol. 10.1007/s12035-018-1156-z.
    25. Chen, B. et al. (2018). Overexpression of Klotho Inhibits HELF Fibroblasts SASP-related Protumoral Effects on Non-small Cell Lung Cancer Cells. J Cancer. 9(7):1248-1258. doi: 10.7150/jca.23967.
    26. Chijimatsu, R. et al. (2017). Characterization of Mesenchymal Stem Cell-Like Cells Derived From Human iPSCs via Neural Crest Development and Their Application for Osteochondral Repair. Stem Cells Int2017:1960965. doi: 10.1155/2017/1960965.
    27. Lines, K.E. et al. (2017). Epigenetic pathway inhibitors represent potential drugs for treating pancreatic and bronchial neuroendocrine tumors. Oncogenesis6(5):e332. doi: 10.1038/oncsis.2017.30.
    28. Murai, S. et al. (2017). Inhibition of malic enzyme 1 disrupts cellular metabolism and leads to vulnerability in cancer cells in glucose-restricted conditions. Oncogenesis6:e329.
    29. O'Hara, S.P. et al. (2017). ETS Proto-Oncogene 1 Transcriptionally Up-regulates the Cholangiocyte Senescence-associated Protein Cyclin Dependent Kinase Inhibitor 2A. J Biol Chem. doi: 10.1074/jbc.M117.777409. 
    30. Zhang, X. et al. (2016). Cryptosporidium parvum infection attenuates the ex vivo propagation of murine intestinal enteroids. PHY2 4:e13060.
CBA-231  
    1. Deng, Z. et al. (2021). Biofunction of Polydopamine Coating in Stem Cell Culture. ACS Appl Mater Interfaces. doi: 10.1021/acsami.0c22565.
    2. Lee, Y.N. et al. (2021). Ultrasonic microbubble VEGF gene delivery improves angiogenesis of senescent endothelial progenitor cells. Sci Rep11(1):13449. doi: 10.1038/s41598-021-92754-3.
    3. Hirata, Y. et al. (2021). Advanced maternal age induces fetal growth restriction through decreased placental inflammatory cytokine expression and immune cell accumulation in mice. J Reprod Dev. doi: 10.1262/jrd.2021-034.
    4. Mehdi, S.J. et al. (2021). Normal and cancer fibroblasts differentially regulate TWIST1, TOX and cytokine gene expression in cutaneous T-cell lymphoma. BMC Cancer21(1):492. doi: 10.1186/s12885-021-08142-7.
    5. Bourdon, B. et al. (2021). Marine Collagen Hydrolysates Promote Collagen Synthesis, Viability and Proliferation While Downregulating the Synthesis of Pro-Catabolic Markers in Human Articular Chondrocytes. Int. J. Mol. Sci22(7):3693. doi: 10.3390/ijms22073693.
    6. Kong, C.S. et al. (2021). Embryo biosensing by uterine natural killer cells determines endometrial fate decisions at implantation. FASEB J35(4):e21336. doi: 10.1096/fj.202002217R.
    7. Baxley, R.M. et al. (2021). Bi-allelic MCM10 variants associated with immune dysfunction and cardiomyopathy cause telomere shortening. Nat Commun12(1):1626. doi: 10.1038/s41467-021-21878-x.
    8. Yamaguchi, S. et al. (2021). Characterization of an active LINE-1 in the naked mole-rat genome. Sci Rep11(1):5725. doi: 10.1038/s41598-021-84962-8.
    9. Bourdon, B. et al. (2021). Marine Collagen Hydrolysates Downregulate the Synthesis of Pro-Catabolic and Pro-Inflammatory Markers of Osteoarthritis and Favor Collagen Production and Metabolic Activity in Equine Articular Chondrocyte Organoids. Int J Mol Sci22(2):E580. doi: 10.3390/ijms22020580.
    10. Jiang, Y. et al. (2021). Histone H3K27 methyltransferase EZH2 and demethylase JMJD3 regulate hepatic stellate cells activation and liver fibrosis. Theranostics11(1):361-378. doi: 10.7150/thno.46360.
    11. Mogilenko, D.A. et al. (2020). Comprehensive Profiling of an Aging Immune System Reveals Clonal GZMK+ CD8+ T Cells as Conserved Hallmark of Inflammaging. Immunity. doi: 10.1016/j.immuni.2020.11.005.
    12. Setoguchi, Y. et al. (2020). Functional assessment of retinal pigment epithelium cell transplants with various degrees of pigmentation for age-related macular degeneration. Kawasaki Medical Journal46:49-58. doi: 10.11482/KMJ-E202046049.
    13. Rostami, A. et al. (2020). Senescence, Necrosis, and Apoptosis Govern Circulating Cell-free DNA Release Kinetics. Cell Rep31(13):107830. doi: 10.1016/j.celrep.2020.107830.
    14. Pacifici, F. et al. (2020). Prdx6 Plays a Main Role in the Crosstalk Between Aging and Metabolic Sarcopenia. Antioxidants (Basel)9(4). pii: E329. doi: 10.3390/antiox9040329.
    15. Lin, X. et al. (2020). Excessive oxidative stress in cumulus granulosa cells induced cell senescence contributes to endometriosis-associated infertility. Redox Biol30:101431. doi: 10.1016/j.redox.2020.101431.
    16. Ohigashi, T. et al. (2019). Protective effect of phosphatidylcholine on lysophosphatidylcholine-induced cellular senescence in cholangiocyte. J Hepatobiliary Pancreat Sci. doi: 10.1002/jhbp.684.
    17. Takagi, H. et al. (2019). Blockade of γ-Glutamylcyclotransferase Enhances Docetaxel Growth Inhibition of Prostate Cancer Cells. Anticancer Res39(9):4811-4816. doi: 10.21873/anticanres.13666.
    18. Tencerova, M. et al. (2019). Obesity-Associated Hypermetabolism and Accelerated Senescence of Bone Marrow Stromal Stem Cells Suggest a Potential Mechanism for Bone Fragility. Cell Rep27(7):2050-2062.e6. doi: 10.1016/j.celrep.2019.04.066.
    19. Morsczeck, C. et al. (2019). Short telomeres correlate with a strong induction of cellular senescence in human dental follicle cells. BMC Mol Cell Biol20(1):5. doi: 10.1186/s12860-019-0185-4.
    20. Cho, S.Y. et al. (2019). Oxytocin Alleviates Cellular Senescence through Oxytocin Receptor-Mediated ERK/Nrf2 Signalling. Br J Dermatol. doi: 10.1111/bjd.17824.
    21. Cao, J. et al. (2019). Combining CDK4/6 inhibition with taxanes enhances anti-tumor efficacy by sustained impairment of pRB-E2F pathways in squamous cell lung cancer. Oncogene. doi: 10.1038/s41388-019-0708-7.
    22. Mehdi, S.J. et al. (2019). Mesenchymal stem cells gene signature in high-risk myeloma bone marrow linked to suppression of distinct IGFBP2-expressing small adipocytes. Br J Haematol184(4):578-593. doi: 10.1111/bjh.15669.
    23. Velusami, C.C. et al. (2018). Polar extract of Curcuma longa protects cartilage homeostasis: possible mechanism of action. Inflammopharmacology26(5):1233-1243. doi: 10.1007/s10787-017-0433-1.
    24. Perla, V. et al. (2018). Effect of ghost pepper on cell proliferation, apoptosis, senescence and global proteomic profile in human renal adenocarcinoma cells. PLoS One13(10):e0206183. doi: 10.1371/journal.pone.0206183.
    25. Rana, K. et al. (2018). Bone marrow neutrophil aging in sickle cell disease mice is associated with impaired osteoblast functions. Biochem Biophys Rep16:110-114. doi: 10.1016/j.bbrep.2018.10.009.
    26. Oja, S. et al. (2018). Automated image analysis detects aging in clinical-grade mesenchymal stromal cell cultures. Stem Cell Res Ther9(1):6. doi: 10.1186/s13287-017-0740-x.
    27. Xu, R. et al. (2017). Tumor suppressor p53 links ceramide metabolism to DNA damage response through alkaline ceramidase 2. Cell Death Differ25(5):841-856. doi: 10.1038/s41418-017-0018-y.
    28. Jeong, J. H. et al. (2017). Inhibitory effect of vitamin C on intrinsic aging in human dermal fibroblasts and hairless mice. Food Sci Biotechnol27(2):555-564. doi: 10.1007/s10068-017-0252-6.
    29. Empl, M.T. et al. (2018). Effects of a Grapevine Shoot Extract Containing Resveratrol and Resveratrol Oligomers on Intestinal Adenoma Development in Mice: In Vitro and In Vivo Studies. Mol Nutr Food Res. 62(2). doi: 10.1002/mnfr.201700450.
    30. Tofiño-Vian, M. et al. (2017). Extracellular Vesicles from Adipose-Derived Mesenchymal Stem Cells Downregulate Senescence Features in Osteoarthritic Osteoblasts. Oxid Med Cell Longev2017:7197598. doi: 10.1155/2017/7197598.
CBA-232  
    1. Cho, E. et al. (2021). Reelin Alleviates Mesenchymal Stem Cell Senescence and Reduces Pathological α-Synuclein Expression in an In Vitro Model of Parkinson’s Disease. Genes12(7):1066. doi: 10.3390/genes12071066.
    2. Nishizawa, H. et al. (2021). Lipid peroxidation and the subsequent cell death transmitting from ferroptotic cells to neighboring cells. Cell Death Dis12(4):332. doi: 10.1038/s41419-021-03613-y.
    3. Martini, H. et al. (2021). Selective Cardiomyocyte Oxidative Stress Leads to Bystander Senescence of Cardiac Stromal Cells. Int. J. Mol. Sci22(5):2245. doi: 10.3390/ijms22052245.
    4. Rothmiller, S. et al. (2021). Chronic senescent human mesenchymal stem cells as possible contributor to the wound healing disorder after exposure to the alkylating agent sulfur mustard. Arch Toxicol. doi: 10.1007/s00204-020-02946-5.
    5. Kim, S.N. et al. (2020). Culturing at Low Cell Density Delays Cellular Senescence of Human Bone Marrow-Derived Mesenchymal Stem Cells in Long-Term Cultures. Int J Stem Cells. doi: 10.15283/ijsc20078.
    6. Jun, E.S. et al. (2020). Gold Nanoparticles Using Ecklonia stolonifera Protect Human Dermal Fibroblasts from UVA-Induced Senescence through Inhibiting MMP-1 and MMP-3. Mar Drugs18(9):E433. doi: 10.3390/md18090433.
    7. van den Berg, J. et al. (2020). Development of transient radioresistance during fractionated irradiation in vitro. Radiother Oncol. doi: 10.1016/j.radonc.2020.04.014.
    8. Fessler, J. et al. (2020). Lymphopenia in primary Sjögren's syndrome is associated with premature aging of naïve CD4+ T cells. Rheumatology (Oxford). pii: keaa105. doi: 10.1093/rheumatology/keaa105.
    9. di Martino, S. et al. (2018). HSP90 inhibition alters the chemotherapy-driven rearrangement of the oncogenic secretome. Oncogene37(10):1369-1385. doi: 10.1038/s41388-017-0044-8.
    10. Nojima, T. et al. (2018). Deregulated Expression of Mammalian lncRNA through Loss of SPT6 Induces R-Loop Formation, Replication Stress, and Cellular Senescence. Mol Cell72(6):970-984.e7. doi: 10.1016/j.molcel.2018.10.011.
    11. Watanabe, J. et al. (2018). Preconditioning of bone marrow-derived mesenchymal stem cells with N-acetyl-L-cysteine enhances bone regeneration via reinforced resistance to oxidative stress. Biomaterials185:25-38. doi: 10.1016/j.biomaterials.2018.08.055.
    12. Nagane, M. et al. (2018). Ataxia-Telangiectasia Mutated (ATM) Kinase Regulates eNOS Expression and Modulates Radiosensitivity in Endothelial Cells Exposed to Ionizing Radiation. Radiat Res189(5):519-528. doi: 10.1667/RR14781.1.
    13. Poulos, M.G. et al. (2017). Endothelial transplantation rejuvenates aged hematopoietic stem cell function. J Clin Invest127(11):4163-4178. doi: 10.1172/JCI93940.
    14. Won, Y.H. et al. (2016). Elucidation of relevant neuroinflammation mechanisms using gene expression profiling in patients with amyotrophic lateral sclerosis. PLoS One 11:e0165290.
    15. Chae, S. Y. et al. (2016). Gardenia jasminoides extract-capped gold nanoparticles reverse hydrogen peroxide-induced premature senescence. J. Photochem Photobiol B.  doi:10.1016/j.jphotobiol.2016.09.033.
    16. Hu, W. et al. (2015). Mechanistic investigation of bone marrow suppression associated with palbociclib and its differentiation from cytotoxic chemotherapiesClin Cancer Res. doi:10.1158/1078-0432.CCR-15-1421.
    17. Kim, J. et al. (2014) p53 Induces Skin Aging by Depleting Blimp1+ Sebaceous Gland Cells. Cell Death Dis5:e1141
    18. Grasso, D. et al. (2014). Genetic Inactivation of the Pancreatitis-Inducible Gene Nupr1 Impairs PanIN Formation by Modulating Kras(G12D)-Induced Senescence. Cell Death Differ21:1633-1641.
    19. Landowski, T. H. et al. (2014).  Targeting Integrin α6 Stimulates Curative-Type Bone Metastasis Lesions in a Xenograft Model. Mol Cancer Ther13:1558-1566.

 

주문정보

주문정보 - Cat No, PRODUCT, SIZE, 수량 등 항목으로 구성되어있습니다.
  Product Cat.No. Size Maker Qty Data Sheet MSDS
96-well Cellular Senescence Assay Kit (SA β-Gal Activity) CBA-231 120 assays CELL BIOLABS
96-well Cellular Senescence Assay Kit (SA β-Gal Activity) CBA-231-5 5x120 assays CELL BIOLABS
Cellular Senescence Detection Kit (SA-β-Gal Staining) CBA-230-5 5x50 assays CELL BIOLABS
Cellular Senescence Detection Kit (SA-β-Gal Staining) CBA-230 50 assays CELL BIOLABS
Quantitative Cellular Senescence Assay CBA-232-5 5x10 assays CELL BIOLABS
Quantitative Cellular Senescence Assay CBA-232 10 assays CELL BIOLABS
Cellular Senescence Assay Kit (Fluorometric) ARG82213 120 assay ARIGO
Cellular Senescence Staining Kit ARG82262 50 assay ARIGO
Cellular Senescence Staining Kit (Fluorometric) ARG82263 10 assay ARIGO
Maker
CELL BIOLABS
Cat.No.
CBA-231
Product
96-well Cellular Senescence Assay Kit (SA β-Gal Activity)
Size
120 assays
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
CBA-231-5
Product
96-well Cellular Senescence Assay Kit (SA β-Gal Activity)
Size
5x120 assays
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
CBA-230-5
Product
Cellular Senescence Detection Kit (SA-β-Gal Staining)
Size
5x50 assays
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
CBA-230
Product
Cellular Senescence Detection Kit (SA-β-Gal Staining)
Size
50 assays
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
CBA-232-5
Product
Quantitative Cellular Senescence Assay
Size
5x10 assays
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
CBA-232
Product
Quantitative Cellular Senescence Assay
Size
10 assays
Qty
Data Sheet
MSDS
Maker
ARIGO
Cat.No.
ARG82213
Product
Cellular Senescence Assay Kit (Fluorometric)
Size
120 assay
Qty
Data Sheet
Maker
ARIGO
Cat.No.
ARG82262
Product
Cellular Senescence Staining Kit
Size
50 assay
Qty
Data Sheet
Maker
ARIGO
Cat.No.
ARG82263
Product
Cellular Senescence Staining Kit (Fluorometric)
Size
10 assay
Qty
Data Sheet

추천제품

자료

웨비나/Video

TOP

제품 문의

0.5 ml Elite Pre-stained Protein Ladder (2 x 0.25 ml) PAL-EPL-500 0.5ml 500
Maker
Cat.No.
Product
Size
Qty
Data Sheet
MSDS

로그인

로그인