고마바이오텍(주)
Category 전체보기
전기영동 > 단백질 전기영동 전기영동 > 헥산 전기영동
Cat. No.전체보기

검색 결과가 없습니다.

Product전체보기

검색 결과가 없습니다.

Brand전체보기

검색 결과가 없습니다.

제품 상세

Antibody

6.5 - 270 kDa 범위를 커버하는 3가지 컬러 밴드를 포함하며,
최대 100%까지의 transfer 효과를 개런티하는 Prestained protein ladder를 소개합니다.

특징

  

  • GFP Reporter 형광을 발현하는 stable cell line 입니다.  
  • Morphology, trypan-blue dye exclusion, viable cell count, microbial contamination-free에 대한 QC를 제공합니다.  

 

 

 

종류 

 

 

293 / GFP Reporter Cells (#AKR-200)

  • 293 cell line은 human adenovirus type 5 DNA가 도입된 primary embryonic human kidney로부터 개발된 cell line 입니다.
  • E1 region of adenovirus (E1a and E1b)에 의해 encoding된 유전자는 viral promoter를 활성화시켜 high level protein을 발현하도록 유도합니다.
  • 293/GFP cell line은 GFP를 발현하며 blasticidin-resistant genes을 가집니다. 
  • 조성 :  1 mL, 1 x 10^6 cells/mL in 70% DMEM, 20% FBS, 10% DMSO
  • Medium :
    - Culture Medium: D-MEM (high glucose), 10% fetal bovine serum (FBS), 0.1 mM MEM NonEssential Amino Acids (NEAA), 2 mM L-glutamine, 1% Pen-Strep, (optional) 10 µg/mL Blasticidin.
    - Freeze Medium: 70% DMEM, 20% FBS, 10% DMSO.


   293/GFP Cell Line. Left: GFP Fluorescence; Right: Phase Contrast.



A549 / GFP Reporter Cells (#AKR-209)

  • A549 cell line은 human alveolar basal epithelial cells로 1972년에 cancerous lung tissue를 배양하면서 개발된 세포주입니다.
  • In vitro에서는 monolayer로 자라고, in vivo에서는 athmyic mice에서 tumor를 유도합니다. 
  • cytidine diphosphocholine pathway를 이용하여 불포화지방산으로 Lecithin을 합성합니다. 
  • A549/GFP cell line은 lentivirus를 통해 GFP 유전자를 도입하여 GFP를 안정적으로 발현합니다. 
  • 조성 : 1 mL, 1 x 10^6cells/mL in 70% DMEM, 20% FBS, 10% DMSO
  • Medium :
    - Culture Medium: D-MEM (high glucose), 10% fetal bovine serum (FBS), 0.1 mM MEM NonEssential Amino Acids (NEAA), 2 mM L-glutamine, 1% Pen-Strep.
    - Freeze Medium: 70% DMEM, 20% FBS, 10% DMSO.

 

   A549/GFP Cell Line. Left: GFP Fluorescence; Right: Phase Contrast

 

 

HeLa / GFP Reporter Cells (#AKR-213)

  

  • HeLa cell은 가장 많이 이용되는 cancer cell line으로, 1951년에 Henrietta Lacks라고 하는여성의 cancerous cervical tumor로부터 개발되었으며, human body 외부에서 잘 살아남고 자라는 특성을 가진 첫번째 cell line 입니다.
  • HeLa/GFP Cell Line은 lentivirus를 이용하여 parental HeLa cells에 GFP와 blasticidin-resistant gene을 도입하였습니다. 
  • 조성 :  1 mL, 1 x 10^6 cells/mL in 70% DMEM, 20% FBS, 10% DMSO
  • Medium :
    - Culture Medium: D-MEM (high glucose), 10% fetal bovine serum (FBS), 0.1 mM MEM NonEssential Amino Acids (NEAA), 2 mM L-glutamine, 1% Pen-Strep, (optional) 10 µg/mL Blasticidin.
    - Freeze Medium: 70% DMEM, 20% FBS, 10% DMSO.

 

  HeLa/GFP Cell Line. Left: GFP Fluorescence; Right: Phase Contrast.

 



NIH3T3 / GFP Reporter Cells (#AKR-214)

  

  • NIH 3T3 cell은 가장 일반적으로 사용되는 섬유아세포 세포주 중 하나로, NIH Swiss mouse embryo에서 유래되었으며, 접촉저해 현상에 감수성을 가집니다. 
  • 3T3란 "3-day transfer, inoculum 3 x 10^5 cells"를 의미합니다. 
  • 조성 : 1 mL, 1 x 10^6 cells/mL in 70% DMEM, 20% FBS, 10% DMSO
  • Media : 
    Culture Medium: D-MEM (high glucose), 10% fetal bovine serum (FBS), 0.1 mM MEM NonEssential Amino Acids (NEAA), 2 mM L-glutamine, 1% Pen-Strep, (optional) 10 µg/mL Blasticidin.
    - Freeze Medium: 70% DMEM, 20% FBS, 10% DMSO.

   NIH3T3/GFP Cell Line. Left: GFP Fluorescence; Right: Phase Contrast. 

 

 

 


사용 논문 

 

AKR-200
    1. Bondarenko, G. et al. (2020). Semiquantitative Methods for GFP Immunohistochemistry and In Situ Hybridization to Evaluate AAV Transduction of Mouse Retinal Cells Following Subretinal Injection. Toxicol Pathol. doi: 10.1177/0192623320964804.
    2. Lainšček, D. et al. (2018). Delivery of an artificial transcription regulator dCas9-VPR by extracellular vesicles for therapeutic gene activation. ACS Synth Biol. doi: 10.1021/acssynbio.8b00192.
    3. De Los Reyes-Berbel, E. et al. (2018). PEI-NIR Heptamethine Cyanine Nanotheranostics for Tumor Targeted Gene Delivery. Bioconjug Chem29(8):2561-2575. doi: 10.1021/acs.bioconjchem.8b00262.
    4. Irvine, S. A. et al. (2015). Printing cell-laden gelatin constructs by free-form fabrication and enzymatic protein crosslinkingBiomed Microdevices. 17:1-8.
AKR-209
    1. Wen, Y. et al. (2020). A supramolecular platform for controlling and optimizing molecular architectures of siRNA targeted delivery vehicles. Sci Adv6(31):eabc2148. doi: 10.1126/sciadv.abc2148.
    2. Ni, B.S. et al. (2019). Plug-and-Play In Vitro Metastasis System toward Recapitulating the Metastatic Cascade. Sci Rep9(1):18110. doi: 10.1038/s41598-019-54711-z.
    3. Obeid, M.A. et al. (2017). Formulation of nonionic surfactant vesicles (NISV) prepared by microfluidics for therapeutic delivery of siRNA into cancer cells. Mol. Pharm14(7):2450-2458.
    4. Kumar, A. et al. (2017). Influenza virus exploits tunneling nanotubes for cell-to-cell spread. Scientific Reports. doi: 10.1038/srep40360.
    5. Shopsowitz, K. E. et al. (2015). Periodic-shRNA molecules are capable of gene silencing, cytotoxicity and innate immune activation in cancer cells. Nucleic Acids Res. doi:10.1093/nar/gkv1488.
    6. Almosnid, N. M. et al. (2015). In vitro antitumor effects of two novel oligostilbenescis-and trans-suffruticosol D, isolated from Paeonia suffruticosa seeds. Int J Oncoldoi:10.3892/ijo.2015.3269.
    7. Zhu, L. et al. (2014). Matrix metalloproteinase 2-sensitive multifunctional polymeric micelles for tumor-specific co-delivery of siRNA and hydrophobic drugs. Biomaterials. 35:4213-4222.
AKR-213
    1. Sánchez-Arribas, N. et al. (2020). Protein Expression Knockdown in Cancer Cells Induced by a Gemini Cationic Lipid Nanovector with Histidine-Based Polar Heads. Pharmaceutics12(9):E791. doi: 10.3390/pharmaceutics12090791.
    2. Villar-Alvarez, E. et al. (2019). Combination of light-driven co-delivery of chemodrugs and plasmonic-induced heat for cancer therapeutics using hybrid protein nanocapsules. J Nanobiotechnology17(1):106. doi: 10.1186/s12951-019-0538-3.
    3. Cunningham, A.J. et al. (2020). Cholic acid-based mixed micelles as siRNA delivery agents for gene therapy. Int J Pharm. doi: 10.1016/j.ijpharm.2020.119078.
    4. Kawaguchi, T. et al. (2019). Changes to the TDP-43 and FUS Interactomes Induced by DNA Damage. J Proteome Res. doi: 10.1021/acs.jproteome.9b00575.
    5. Bovone, G. et al. (2019). Flow‐based reactor design for the continuous production of polymeric nanoparticles. AIChE J. doi: 10.1002/aic.16840.
    6. Bertsch, P. et al. (2019). Injectable Biocompatible Hydrogels from Cellulose Nanocrystals for Locally Targeted Sustained Drug Release. ACS Appl Mater Interfaces. doi: 10.1021/acsami.9b15896.
    7. Villar-Alvarez, E. et al. (2019). siRNA Silencing by Chemically Modified Biopolymeric Nanovectors. ACS Omega4(2):3904-3921. doi: 10.1021/acsomega.8b02875.
    8. Encinas-Basurto, D. et al. (2018). Hybrid folic acid-conjugated gold nanorods-loaded human serum albumin nanoparticles for simultaneous photothermal and chemotherapeutic therapy. Mater Sci Eng C Mater Biol Appl91:669-678. doi: 10.1016/j.msec.2018.06.002.
    9. Pikabea, A. et al. (2018). pH-controlled doxorubicin delivery from PDEAEMA-based nanogels. Journal of Molecular Liquids266:321-329. doi: 10.1016/j.molliq.2018.06.068.
    10. Cambón, A. et al. (2018). Characterization of the complexation phenomenon and biological activity in vitro of polyplexes based on Tetronic T901 and DNA. J Colloid Interface Sci519:58-70. doi: 10.1016/j.jcis.2018.02.051.
    11. Lin, Y. et al. (2018). Activatable cell-biomaterial interfacing with photo-caged peptides. Chem Sci10(4):1158-1167. doi: 10.1039/c8sc04725a.
    12. Wu, C. et al. (2018). Rationally Designed Polycationic Carriers for Potent Polymeric siRNA-Mediated Gene Silencing. ACS Nano12(7):6504-6514. doi: 10.1021/acsnano.7b08777.
    13. Giampietro, C. et al. (2017). Cholesterol impairment contributes to neuroserpin aggregation. Sci Rep7:43669. doi: 10.1038/srep43669.
    14. Ganini, D. et al. (2017). Fluorescent proteins such as eGFP lead to catalytic oxidative stress in cells. Redox Biol12:462-468. doi: 10.1016/j.redox.2017.03.002.
    15. Du, X. et al. (2017). In situ generated D-peptidic nanofibrils as multifaceted apoptotic inducers to target cancer cells. Cell Death Dis. doi: 10.1038/cddis.2016.466.
    16. Li, G. et al. (2017). Patching of Lipid Rafts by Molecular Self-Assembled Nanofibrils Suppresses Cancer Cell Migration. Chem2(2):283–298. doi: 10.1016/j.chempr.2017.01.002.
    17. Chen, X. et al. (2016). Patterned poly (dopamine) films for enhanced cell adhesion. Bioconj. Chem. doi:10.1021/acs.bioconjchem.6b00544.
    18. Castleberry, S. A. et al. (2016). Nanolayered siRNA delivery platforms for local silencing of CTGF reduce cutaneous scar contraction in third-degree burns. Biomaterialsdoi:10.1016/j.biomaterials.2016.04.007.
    19. Alidori, S. et al. (2016). Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury. Sci Transl Med. doi:10.1126/scitranslmed.aac9647.
    20. Shopsowitz, K. E. et al. (2015). Periodic-shRNA molecules are capable of gene silencing, cytotoxicity and innate immune activation in cancer cells. Nucleic Acids Res. doi:10.1093/nar/gkv1488.
    21. Castleberry, S. A. et al. (2015). Self-assembled wound dressings silence MMP-9 and improve diabetic wound healing in vivo. Adv Mater. doi:10.1002/adma.201503565.
    22. Dosta, P. et al. (2015). Surface charge tunability as a powerful strategy to control electrostatic interaction for high efficiency silencing, using tailored oligopeptide-modified Poly (beta-amino ester) s (PBAEs). Acta Biomater. doi: 10.1016/j.actbio.2015.03.029. 
    23. Topete, A. et al. (2014). NIR-light active hybrid nanoparticles for combined imaging and bimodal therapy of cancerous cells. J Mater Chem. 2:6967-6977.
    24. Weerakkody, D. et al. (2013). Family of pH (low) Insertion Peptides for Tumor Targeting. PNAS110:5834-5839.
AKR-214
    1. Guidotti, G. et al. (2020). Regenerated wool keratin-polybutylene succinate nanofibrous mats for drug delivery and cells culture. Polym Degrad Stab. doi: 10.1016/j.polymdegradstab.2020.109272.
    2. Jung, W.H. et al. (2020). Force-dependent extracellular matrix remodeling by early-stage cancer cells alters diffusion and induces carcinoma-associated fibroblasts. Biomaterials234:119756. doi: 10.1016/j.biomaterials.2020.119756.
    3. Decataldo, F. et al. (2019). Organic Electrochemical Transistors for Real‐Time Monitoring of In Vitro Silver Nanoparticle Toxicity. Advanced Biosystems. doi: 10.1002/adbi.201900204.
    4. Thönnes, S. et al. (2019). Success and efficiency of cell seeding in Avian Tendon Xenografts – A promising alternative for tendon and ligament reconstruction. J Orthop. doi: 10.1016/j.jor.2019.09.010.
    5. Yu, D. et al. (2019). Microfluidic preparation, shrinkage, and surface modification of monodispersed alginate microbeads for 3D cell culture. RSC Adv9:11101–11110. doi: 10.1039/C9RA01443H.
    6. Weems, A.C. et al. (2018). Improving the Oxidative Stability of Shape Memory Polyurethanes Containing Tertiary Amines by the Presence of Isocyanurate Triols. Macromolecules. doi: 10.1021/acs.macromol.8b01925.
    7. Liu, S. et al. (2018). Cellular interactions with hydrogel microfibers synthesized via interfacial tetrazine ligation. Biomaterials180:24-35. doi: 10.1016/j.biomaterials.2018.06.042.
    8. Barbalinardo, M. et al. (2018). Data-Matrix Technology for Multiparameter Monitoring of Cell Cultures. Small Methods2(4), 1700377. doi: 10.1002/smtd.201700377.
    9. Maglione, M.S. et al. (2018). Fluid Mixing for Low-Power 'Digital Microfluidics' Using Electroactive Molecular Monolayers. Small14(10). doi: 10.1002/smll.201703344.
    10. Sanchez-Ramos, J. et al (2018). Chitosan-Mangafodipir nanoparticles designed for intranasal delivery of siRNA and DNA to brain. Journal of Drug Delivery Science and Technology43: 453-460.
    11. Weems, A.C. et al. (2017). Shape memory polyurethanes with oxidation-induced degradation: in vivo and in vitro correlations for endovascular material applications. Acta Biomater. doi: 10.1016/j.actbio.2017.06.030.
    12. Bouchlaka MN, et al. (2017). Human Mesenchymal Stem Cell-Educated Macrophages Are a Distinct High IL-6-Producing Subset that Confer Protection in Graft-versus-Host-Disease and Radiation Injury Models. Biol Blood Marrow Transplant. pii: S1083-8791(17)30306-3. doi: 10.1016/j.bbmt.2017.02.018. 
    13. Pearson, R. A. et al. (2016). Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat Commundoi:10.1038/ncomms13029.
    14. Nash, L. D. et al. (2016). Cold plasma reticulation of shape memory embolic tissue scaffolds. Macromol Rapid Commundoi:10.1002/marc.201600268.
    15. Castleberry, S. A. et al. (2016). Nanolayered siRNA delivery platforms for local silencing of CTGF reduce cutaneous scar contraction in third-degree burns. Biomaterialsdoi:10.1016/j.biomaterials.2016.04.007.
    16. Castleberry, S. A. et al. (2015). Self-assembled wound dressings silence MMP-9 and improve diabetic wound healing in vivo. Adv Mater. doi:10.1002/adma.201503565.
    17. Peak, C. W. et al. (2015). Elastomeric cell-laden nanocomposite microfibers for engineering complex tissues. Cell Mol Bioengdoi:10.1007/s12195-015-0406-7.
    18. Tassoni, A. et al. (2015). Molecular mechanisms mediating retinal reactive gliosis following bone marrow mesenchymal stem cell transplantation. Stem Cells. doi: 10.1002/stem.2095.
    19. Scott, C. M. et al. (2015).  3D cell entrapment as a function of the weight percent of peptide-amphiphile hydrogels.  Langmuir.  doi:10.1021/acs.langmuir.5b00196.
    20. Jo, W. et al. (2014). Microfluidic fabrication of cell-derived nanovesicles as endogenous RNA carriers. Lab Chip. 14:1261-1269.
AKR-208
    1. Funakoshi-Tago, M. et al. (2020). Coffee decoction enhances tamoxifen proapoptotic activity on MCF-7 cells. Sci Rep10(1):19588. doi: 10.1038/s41598-020-76445-z.
    2. Boutin, M.E. et al. (2018). A high-throughput imaging and nuclear segmentation analysis protocol for cleared 3D culture models. Sci Rep8(1):11135. doi: 10.1038/s41598-018-29169-0.

 

주문정보

주문정보 - Cat No, PRODUCT, SIZE, 수량 등 항목으로 구성되어있습니다.
  Product Cat.No. Size Maker Qty Data Sheet MSDS
전체보기

추천제품

자료

웨비나/Video

TOP

제품 문의

0.5 ml Elite Pre-stained Protein Ladder (2 x 0.25 ml) PAL-EPL-500 0.5ml 500
Maker
Cat.No.
Product
Size
Qty
Data Sheet
MSDS

로그인

로그인