고마바이오텍(주)
Category 전체보기
전기영동 > 단백질 전기영동 전기영동 > 헥산 전기영동
Cat. No.전체보기

검색 결과가 없습니다.

Product전체보기

검색 결과가 없습니다.

Brand전체보기

검색 결과가 없습니다.

제품 상세
GFP Reporter Stable Cell Lines (293, A549, HeLa, NIH3T3, T47D) 이미지

GFP Reporter Stable Cell Lines (293, A549, HeLa, NIH3T3, T47D)

Fluorescent or luminescent reporter molecule을 안정적으로 발현하는 293/GFP, A549/GFP, HeLa/GFP, NIH3T3/GFP, T47D/GFP Reporter Stable Cell Line을 제공합니다.

특징

  

  • GFP Reporter 형광을 발현하는 stable cell line 입니다.  
  • Morphology, trypan-blue dye exclusion, viable cell count, microbial contamination-free에 대한 QC를 제공합니다.  

 

 

 

종류 

 

 

293 / GFP Reporter Cells (#AKR-200)

  • 293 cell line은 human adenovirus type 5 DNA가 도입된 primary embryonic human kidney로부터 개발된 cell line 입니다.
  • E1 region of adenovirus (E1a and E1b)에 의해 encoding된 유전자는 viral promoter를 활성화시켜 high level protein을 발현하도록 유도합니다.
  • 293/GFP cell line은 GFP를 발현하며 blasticidin-resistant genes을 가집니다. 
  • 조성 :  1 mL, 1 x 10^6 cells/mL in 70% DMEM, 20% FBS, 10% DMSO
  • Medium :
    - Culture Medium: D-MEM (high glucose), 10% fetal bovine serum (FBS), 0.1 mM MEM NonEssential Amino Acids (NEAA), 2 mM L-glutamine, 1% Pen-Strep, (optional) 10 µg/mL Blasticidin.
    - Freeze Medium: 70% DMEM, 20% FBS, 10% DMSO.


   293/GFP Cell Line. Left: GFP Fluorescence; Right: Phase Contrast.



A549 / GFP Reporter Cells (#AKR-209)

  • A549 cell line은 human alveolar basal epithelial cells로 1972년에 cancerous lung tissue를 배양하면서 개발된 세포주입니다.
  • In vitro에서는 monolayer로 자라고, in vivo에서는 athmyic mice에서 tumor를 유도합니다. 
  • cytidine diphosphocholine pathway를 이용하여 불포화지방산으로 Lecithin을 합성합니다. 
  • A549/GFP cell line은 lentivirus를 통해 GFP 유전자를 도입하여 GFP를 안정적으로 발현합니다. 
  • 조성 : 1 mL, 1 x 10^6cells/mL in 70% DMEM, 20% FBS, 10% DMSO
  • Medium :
    - Culture Medium: D-MEM (high glucose), 10% fetal bovine serum (FBS), 0.1 mM MEM NonEssential Amino Acids (NEAA), 2 mM L-glutamine, 1% Pen-Strep.
    - Freeze Medium: 70% DMEM, 20% FBS, 10% DMSO.

 

   A549/GFP Cell Line. Left: GFP Fluorescence; Right: Phase Contrast

 

 

HeLa / GFP Reporter Cells (#AKR-213)

  

  • HeLa cell은 가장 많이 이용되는 cancer cell line으로, 1951년에 Henrietta Lacks라고 하는여성의 cancerous cervical tumor로부터 개발되었으며, human body 외부에서 잘 살아남고 자라는 특성을 가진 첫번째 cell line 입니다.
  • HeLa/GFP Cell Line은 lentivirus를 이용하여 parental HeLa cells에 GFP와 blasticidin-resistant gene을 도입하였습니다. 
  • 조성 :  1 mL, 1 x 10^6 cells/mL in 70% DMEM, 20% FBS, 10% DMSO
  • Medium :
    - Culture Medium: D-MEM (high glucose), 10% fetal bovine serum (FBS), 0.1 mM MEM NonEssential Amino Acids (NEAA), 2 mM L-glutamine, 1% Pen-Strep, (optional) 10 µg/mL Blasticidin.
    - Freeze Medium: 70% DMEM, 20% FBS, 10% DMSO.

 

  HeLa/GFP Cell Line. Left: GFP Fluorescence; Right: Phase Contrast.

 



NIH3T3 / GFP Reporter Cells (#AKR-214)

  

  • NIH 3T3 cell은 가장 일반적으로 사용되는 섬유아세포 세포주 중 하나로, NIH Swiss mouse embryo에서 유래되었으며, 접촉저해 현상에 감수성을 가집니다. 
  • 3T3란 "3-day transfer, inoculum 3 x 10^5 cells"를 의미합니다. 
  • 조성 : 1 mL, 1 x 10^6 cells/mL in 70% DMEM, 20% FBS, 10% DMSO
  • Media : 
    Culture Medium: D-MEM (high glucose), 10% fetal bovine serum (FBS), 0.1 mM MEM NonEssential Amino Acids (NEAA), 2 mM L-glutamine, 1% Pen-Strep, (optional) 10 µg/mL Blasticidin.
    - Freeze Medium: 70% DMEM, 20% FBS, 10% DMSO.

   NIH3T3/GFP Cell Line. Left: GFP Fluorescence; Right: Phase Contrast. 

 

 

 


사용 논문 

 

AKR-200
    1. Bondarenko, G. et al. (2020). Semiquantitative Methods for GFP Immunohistochemistry and In Situ Hybridization to Evaluate AAV Transduction of Mouse Retinal Cells Following Subretinal Injection. Toxicol Pathol. doi: 10.1177/0192623320964804.
    2. Lainšček, D. et al. (2018). Delivery of an artificial transcription regulator dCas9-VPR by extracellular vesicles for therapeutic gene activation. ACS Synth Biol. doi: 10.1021/acssynbio.8b00192.
    3. De Los Reyes-Berbel, E. et al. (2018). PEI-NIR Heptamethine Cyanine Nanotheranostics for Tumor Targeted Gene Delivery. Bioconjug Chem29(8):2561-2575. doi: 10.1021/acs.bioconjchem.8b00262.
    4. Irvine, S. A. et al. (2015). Printing cell-laden gelatin constructs by free-form fabrication and enzymatic protein crosslinkingBiomed Microdevices. 17:1-8.
AKR-209
    1. Wen, Y. et al. (2020). A supramolecular platform for controlling and optimizing molecular architectures of siRNA targeted delivery vehicles. Sci Adv6(31):eabc2148. doi: 10.1126/sciadv.abc2148.
    2. Ni, B.S. et al. (2019). Plug-and-Play In Vitro Metastasis System toward Recapitulating the Metastatic Cascade. Sci Rep9(1):18110. doi: 10.1038/s41598-019-54711-z.
    3. Obeid, M.A. et al. (2017). Formulation of nonionic surfactant vesicles (NISV) prepared by microfluidics for therapeutic delivery of siRNA into cancer cells. Mol. Pharm14(7):2450-2458.
    4. Kumar, A. et al. (2017). Influenza virus exploits tunneling nanotubes for cell-to-cell spread. Scientific Reports. doi: 10.1038/srep40360.
    5. Shopsowitz, K. E. et al. (2015). Periodic-shRNA molecules are capable of gene silencing, cytotoxicity and innate immune activation in cancer cells. Nucleic Acids Res. doi:10.1093/nar/gkv1488.
    6. Almosnid, N. M. et al. (2015). In vitro antitumor effects of two novel oligostilbenescis-and trans-suffruticosol D, isolated from Paeonia suffruticosa seeds. Int J Oncoldoi:10.3892/ijo.2015.3269.
    7. Zhu, L. et al. (2014). Matrix metalloproteinase 2-sensitive multifunctional polymeric micelles for tumor-specific co-delivery of siRNA and hydrophobic drugs. Biomaterials. 35:4213-4222.
AKR-213
    1. Sánchez-Arribas, N. et al. (2020). Protein Expression Knockdown in Cancer Cells Induced by a Gemini Cationic Lipid Nanovector with Histidine-Based Polar Heads. Pharmaceutics12(9):E791. doi: 10.3390/pharmaceutics12090791.
    2. Villar-Alvarez, E. et al. (2019). Combination of light-driven co-delivery of chemodrugs and plasmonic-induced heat for cancer therapeutics using hybrid protein nanocapsules. J Nanobiotechnology17(1):106. doi: 10.1186/s12951-019-0538-3.
    3. Cunningham, A.J. et al. (2020). Cholic acid-based mixed micelles as siRNA delivery agents for gene therapy. Int J Pharm. doi: 10.1016/j.ijpharm.2020.119078.
    4. Kawaguchi, T. et al. (2019). Changes to the TDP-43 and FUS Interactomes Induced by DNA Damage. J Proteome Res. doi: 10.1021/acs.jproteome.9b00575.
    5. Bovone, G. et al. (2019). Flow‐based reactor design for the continuous production of polymeric nanoparticles. AIChE J. doi: 10.1002/aic.16840.
    6. Bertsch, P. et al. (2019). Injectable Biocompatible Hydrogels from Cellulose Nanocrystals for Locally Targeted Sustained Drug Release. ACS Appl Mater Interfaces. doi: 10.1021/acsami.9b15896.
    7. Villar-Alvarez, E. et al. (2019). siRNA Silencing by Chemically Modified Biopolymeric Nanovectors. ACS Omega4(2):3904-3921. doi: 10.1021/acsomega.8b02875.
    8. Encinas-Basurto, D. et al. (2018). Hybrid folic acid-conjugated gold nanorods-loaded human serum albumin nanoparticles for simultaneous photothermal and chemotherapeutic therapy. Mater Sci Eng C Mater Biol Appl91:669-678. doi: 10.1016/j.msec.2018.06.002.
    9. Pikabea, A. et al. (2018). pH-controlled doxorubicin delivery from PDEAEMA-based nanogels. Journal of Molecular Liquids266:321-329. doi: 10.1016/j.molliq.2018.06.068.
    10. Cambón, A. et al. (2018). Characterization of the complexation phenomenon and biological activity in vitro of polyplexes based on Tetronic T901 and DNA. J Colloid Interface Sci519:58-70. doi: 10.1016/j.jcis.2018.02.051.
    11. Lin, Y. et al. (2018). Activatable cell-biomaterial interfacing with photo-caged peptides. Chem Sci10(4):1158-1167. doi: 10.1039/c8sc04725a.
    12. Wu, C. et al. (2018). Rationally Designed Polycationic Carriers for Potent Polymeric siRNA-Mediated Gene Silencing. ACS Nano12(7):6504-6514. doi: 10.1021/acsnano.7b08777.
    13. Giampietro, C. et al. (2017). Cholesterol impairment contributes to neuroserpin aggregation. Sci Rep7:43669. doi: 10.1038/srep43669.
    14. Ganini, D. et al. (2017). Fluorescent proteins such as eGFP lead to catalytic oxidative stress in cells. Redox Biol12:462-468. doi: 10.1016/j.redox.2017.03.002.
    15. Du, X. et al. (2017). In situ generated D-peptidic nanofibrils as multifaceted apoptotic inducers to target cancer cells. Cell Death Dis. doi: 10.1038/cddis.2016.466.
    16. Li, G. et al. (2017). Patching of Lipid Rafts by Molecular Self-Assembled Nanofibrils Suppresses Cancer Cell Migration. Chem2(2):283–298. doi: 10.1016/j.chempr.2017.01.002.
    17. Chen, X. et al. (2016). Patterned poly (dopamine) films for enhanced cell adhesion. Bioconj. Chem. doi:10.1021/acs.bioconjchem.6b00544.
    18. Castleberry, S. A. et al. (2016). Nanolayered siRNA delivery platforms for local silencing of CTGF reduce cutaneous scar contraction in third-degree burns. Biomaterialsdoi:10.1016/j.biomaterials.2016.04.007.
    19. Alidori, S. et al. (2016). Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury. Sci Transl Med. doi:10.1126/scitranslmed.aac9647.
    20. Shopsowitz, K. E. et al. (2015). Periodic-shRNA molecules are capable of gene silencing, cytotoxicity and innate immune activation in cancer cells. Nucleic Acids Res. doi:10.1093/nar/gkv1488.
    21. Castleberry, S. A. et al. (2015). Self-assembled wound dressings silence MMP-9 and improve diabetic wound healing in vivo. Adv Mater. doi:10.1002/adma.201503565.
    22. Dosta, P. et al. (2015). Surface charge tunability as a powerful strategy to control electrostatic interaction for high efficiency silencing, using tailored oligopeptide-modified Poly (beta-amino ester) s (PBAEs). Acta Biomater. doi: 10.1016/j.actbio.2015.03.029. 
    23. Topete, A. et al. (2014). NIR-light active hybrid nanoparticles for combined imaging and bimodal therapy of cancerous cells. J Mater Chem. 2:6967-6977.
    24. Weerakkody, D. et al. (2013). Family of pH (low) Insertion Peptides for Tumor Targeting. PNAS110:5834-5839.
AKR-214
    1. Guidotti, G. et al. (2020). Regenerated wool keratin-polybutylene succinate nanofibrous mats for drug delivery and cells culture. Polym Degrad Stab. doi: 10.1016/j.polymdegradstab.2020.109272.
    2. Jung, W.H. et al. (2020). Force-dependent extracellular matrix remodeling by early-stage cancer cells alters diffusion and induces carcinoma-associated fibroblasts. Biomaterials234:119756. doi: 10.1016/j.biomaterials.2020.119756.
    3. Decataldo, F. et al. (2019). Organic Electrochemical Transistors for Real‐Time Monitoring of In Vitro Silver Nanoparticle Toxicity. Advanced Biosystems. doi: 10.1002/adbi.201900204.
    4. Thönnes, S. et al. (2019). Success and efficiency of cell seeding in Avian Tendon Xenografts – A promising alternative for tendon and ligament reconstruction. J Orthop. doi: 10.1016/j.jor.2019.09.010.
    5. Yu, D. et al. (2019). Microfluidic preparation, shrinkage, and surface modification of monodispersed alginate microbeads for 3D cell culture. RSC Adv9:11101–11110. doi: 10.1039/C9RA01443H.
    6. Weems, A.C. et al. (2018). Improving the Oxidative Stability of Shape Memory Polyurethanes Containing Tertiary Amines by the Presence of Isocyanurate Triols. Macromolecules. doi: 10.1021/acs.macromol.8b01925.
    7. Liu, S. et al. (2018). Cellular interactions with hydrogel microfibers synthesized via interfacial tetrazine ligation. Biomaterials180:24-35. doi: 10.1016/j.biomaterials.2018.06.042.
    8. Barbalinardo, M. et al. (2018). Data-Matrix Technology for Multiparameter Monitoring of Cell Cultures. Small Methods2(4), 1700377. doi: 10.1002/smtd.201700377.
    9. Maglione, M.S. et al. (2018). Fluid Mixing for Low-Power 'Digital Microfluidics' Using Electroactive Molecular Monolayers. Small14(10). doi: 10.1002/smll.201703344.
    10. Sanchez-Ramos, J. et al (2018). Chitosan-Mangafodipir nanoparticles designed for intranasal delivery of siRNA and DNA to brain. Journal of Drug Delivery Science and Technology43: 453-460.
    11. Weems, A.C. et al. (2017). Shape memory polyurethanes with oxidation-induced degradation: in vivo and in vitro correlations for endovascular material applications. Acta Biomater. doi: 10.1016/j.actbio.2017.06.030.
    12. Bouchlaka MN, et al. (2017). Human Mesenchymal Stem Cell-Educated Macrophages Are a Distinct High IL-6-Producing Subset that Confer Protection in Graft-versus-Host-Disease and Radiation Injury Models. Biol Blood Marrow Transplant. pii: S1083-8791(17)30306-3. doi: 10.1016/j.bbmt.2017.02.018. 
    13. Pearson, R. A. et al. (2016). Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat Commundoi:10.1038/ncomms13029.
    14. Nash, L. D. et al. (2016). Cold plasma reticulation of shape memory embolic tissue scaffolds. Macromol Rapid Commundoi:10.1002/marc.201600268.
    15. Castleberry, S. A. et al. (2016). Nanolayered siRNA delivery platforms for local silencing of CTGF reduce cutaneous scar contraction in third-degree burns. Biomaterialsdoi:10.1016/j.biomaterials.2016.04.007.
    16. Castleberry, S. A. et al. (2015). Self-assembled wound dressings silence MMP-9 and improve diabetic wound healing in vivo. Adv Mater. doi:10.1002/adma.201503565.
    17. Peak, C. W. et al. (2015). Elastomeric cell-laden nanocomposite microfibers for engineering complex tissues. Cell Mol Bioengdoi:10.1007/s12195-015-0406-7.
    18. Tassoni, A. et al. (2015). Molecular mechanisms mediating retinal reactive gliosis following bone marrow mesenchymal stem cell transplantation. Stem Cells. doi: 10.1002/stem.2095.
    19. Scott, C. M. et al. (2015).  3D cell entrapment as a function of the weight percent of peptide-amphiphile hydrogels.  Langmuir.  doi:10.1021/acs.langmuir.5b00196.
    20. Jo, W. et al. (2014). Microfluidic fabrication of cell-derived nanovesicles as endogenous RNA carriers. Lab Chip. 14:1261-1269.
AKR-208
    1. Funakoshi-Tago, M. et al. (2020). Coffee decoction enhances tamoxifen proapoptotic activity on MCF-7 cells. Sci Rep10(1):19588. doi: 10.1038/s41598-020-76445-z.
    2. Boutin, M.E. et al. (2018). A high-throughput imaging and nuclear segmentation analysis protocol for cleared 3D culture models. Sci Rep8(1):11135. doi: 10.1038/s41598-018-29169-0.

 

주문정보

주문정보 - Cat No, PRODUCT, SIZE, 수량 등 항목으로 구성되어있습니다.
  Product Cat.No. Size Maker Qty Data Sheet MSDS
293/GFP Cell Line AKR-200 1 vial CELL BIOLABS
A549/GFP Cell Line AKR-209 1 vial CELL BIOLABS
HeLa/GFP Cell Line AKR-213 1 vial CELL BIOLABS
NIH3T3/GFP Cell Line AKR-214 1 vial CELL BIOLABS
Maker
CELL BIOLABS
Cat.No.
AKR-200
Product
293/GFP Cell Line
Size
1 vial
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
AKR-209
Product
A549/GFP Cell Line
Size
1 vial
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
AKR-213
Product
HeLa/GFP Cell Line
Size
1 vial
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
AKR-214
Product
NIH3T3/GFP Cell Line
Size
1 vial
Qty
Data Sheet
MSDS

추천제품

자료

웨비나/Video

TOP

제품 문의

0.5 ml Elite Pre-stained Protein Ladder (2 x 0.25 ml) PAL-EPL-500 0.5ml 500
Maker
Cat.No.
Product
Size
Qty
Data Sheet
MSDS

로그인

로그인