제품 상세 Antibody 6.5 - 270 kDa 범위를 커버하는 3가지 컬러 밴드를 포함하며, 최대 100%까지의 transfer 효과를 개런티하는 Prestained protein ladder를 소개합니다. 프린트 제품 문의 특징 GFP Reporter 형광을 발현하는 stable cell line 입니다. Morphology, trypan-blue dye exclusion, viable cell count, microbial contamination-free에 대한 QC를 제공합니다. 종류 293 / GFP Reporter Cells (#AKR-200)293 cell line은 human adenovirus type 5 DNA가 도입된 primary embryonic human kidney로부터 개발된 cell line 입니다.E1 region of adenovirus (E1a and E1b)에 의해 encoding된 유전자는 viral promoter를 활성화시켜 high level protein을 발현하도록 유도합니다.293/GFP cell line은 GFP를 발현하며 blasticidin-resistant genes을 가집니다. 조성 : 1 mL, 1 x 10^6 cells/mL in 70% DMEM, 20% FBS, 10% DMSOMedium : - Culture Medium: D-MEM (high glucose), 10% fetal bovine serum (FBS), 0.1 mM MEM NonEssential Amino Acids (NEAA), 2 mM L-glutamine, 1% Pen-Strep, (optional) 10 µg/mL Blasticidin.- Freeze Medium: 70% DMEM, 20% FBS, 10% DMSO. 293/GFP Cell Line. Left: GFP Fluorescence; Right: Phase Contrast.A549 / GFP Reporter Cells (#AKR-209)A549 cell line은 human alveolar basal epithelial cells로 1972년에 cancerous lung tissue를 배양하면서 개발된 세포주입니다.In vitro에서는 monolayer로 자라고, in vivo에서는 athmyic mice에서 tumor를 유도합니다. cytidine diphosphocholine pathway를 이용하여 불포화지방산으로 Lecithin을 합성합니다. A549/GFP cell line은 lentivirus를 통해 GFP 유전자를 도입하여 GFP를 안정적으로 발현합니다. 조성 : 1 mL, 1 x 10^6cells/mL in 70% DMEM, 20% FBS, 10% DMSOMedium : - Culture Medium: D-MEM (high glucose), 10% fetal bovine serum (FBS), 0.1 mM MEM NonEssential Amino Acids (NEAA), 2 mM L-glutamine, 1% Pen-Strep.- Freeze Medium: 70% DMEM, 20% FBS, 10% DMSO. A549/GFP Cell Line. Left: GFP Fluorescence; Right: Phase Contrast HeLa / GFP Reporter Cells (#AKR-213) HeLa cell은 가장 많이 이용되는 cancer cell line으로, 1951년에 Henrietta Lacks라고 하는여성의 cancerous cervical tumor로부터 개발되었으며, human body 외부에서 잘 살아남고 자라는 특성을 가진 첫번째 cell line 입니다.HeLa/GFP Cell Line은 lentivirus를 이용하여 parental HeLa cells에 GFP와 blasticidin-resistant gene을 도입하였습니다. 조성 : 1 mL, 1 x 10^6 cells/mL in 70% DMEM, 20% FBS, 10% DMSOMedium : - Culture Medium: D-MEM (high glucose), 10% fetal bovine serum (FBS), 0.1 mM MEM NonEssential Amino Acids (NEAA), 2 mM L-glutamine, 1% Pen-Strep, (optional) 10 µg/mL Blasticidin.- Freeze Medium: 70% DMEM, 20% FBS, 10% DMSO. HeLa/GFP Cell Line. Left: GFP Fluorescence; Right: Phase Contrast. NIH3T3 / GFP Reporter Cells (#AKR-214) NIH 3T3 cell은 가장 일반적으로 사용되는 섬유아세포 세포주 중 하나로, NIH Swiss mouse embryo에서 유래되었으며, 접촉저해 현상에 감수성을 가집니다. 3T3란 "3-day transfer, inoculum 3 x 10^5 cells"를 의미합니다. 조성 : 1 mL, 1 x 10^6 cells/mL in 70% DMEM, 20% FBS, 10% DMSOMedia : - Culture Medium: D-MEM (high glucose), 10% fetal bovine serum (FBS), 0.1 mM MEM NonEssential Amino Acids (NEAA), 2 mM L-glutamine, 1% Pen-Strep, (optional) 10 µg/mL Blasticidin.- Freeze Medium: 70% DMEM, 20% FBS, 10% DMSO. NIH3T3/GFP Cell Line. Left: GFP Fluorescence; Right: Phase Contrast. 사용 논문 AKR-200 Bondarenko, G. et al. (2020). Semiquantitative Methods for GFP Immunohistochemistry and In Situ Hybridization to Evaluate AAV Transduction of Mouse Retinal Cells Following Subretinal Injection. Toxicol Pathol. doi: 10.1177/0192623320964804.Lainšček, D. et al. (2018). Delivery of an artificial transcription regulator dCas9-VPR by extracellular vesicles for therapeutic gene activation. ACS Synth Biol. doi: 10.1021/acssynbio.8b00192.De Los Reyes-Berbel, E. et al. (2018). PEI-NIR Heptamethine Cyanine Nanotheranostics for Tumor Targeted Gene Delivery. Bioconjug Chem. 29(8):2561-2575. doi: 10.1021/acs.bioconjchem.8b00262.Irvine, S. A. et al. (2015). Printing cell-laden gelatin constructs by free-form fabrication and enzymatic protein crosslinking. Biomed Microdevices. 17:1-8.AKR-209 Wen, Y. et al. (2020). A supramolecular platform for controlling and optimizing molecular architectures of siRNA targeted delivery vehicles. Sci Adv. 6(31):eabc2148. doi: 10.1126/sciadv.abc2148.Ni, B.S. et al. (2019). Plug-and-Play In Vitro Metastasis System toward Recapitulating the Metastatic Cascade. Sci Rep. 9(1):18110. doi: 10.1038/s41598-019-54711-z.Obeid, M.A. et al. (2017). Formulation of nonionic surfactant vesicles (NISV) prepared by microfluidics for therapeutic delivery of siRNA into cancer cells. Mol. Pharm. 14(7):2450-2458.Kumar, A. et al. (2017). Influenza virus exploits tunneling nanotubes for cell-to-cell spread. Scientific Reports. doi: 10.1038/srep40360.Shopsowitz, K. E. et al. (2015). Periodic-shRNA molecules are capable of gene silencing, cytotoxicity and innate immune activation in cancer cells. Nucleic Acids Res. doi:10.1093/nar/gkv1488.Almosnid, N. M. et al. (2015). In vitro antitumor effects of two novel oligostilbenes, cis-and trans-suffruticosol D, isolated from Paeonia suffruticosa seeds. Int J Oncol. doi:10.3892/ijo.2015.3269.Zhu, L. et al. (2014). Matrix metalloproteinase 2-sensitive multifunctional polymeric micelles for tumor-specific co-delivery of siRNA and hydrophobic drugs. Biomaterials. 35:4213-4222.AKR-213 Sánchez-Arribas, N. et al. (2020). Protein Expression Knockdown in Cancer Cells Induced by a Gemini Cationic Lipid Nanovector with Histidine-Based Polar Heads. Pharmaceutics. 12(9):E791. doi: 10.3390/pharmaceutics12090791.Villar-Alvarez, E. et al. (2019). Combination of light-driven co-delivery of chemodrugs and plasmonic-induced heat for cancer therapeutics using hybrid protein nanocapsules. J Nanobiotechnology. 17(1):106. doi: 10.1186/s12951-019-0538-3.Cunningham, A.J. et al. (2020). Cholic acid-based mixed micelles as siRNA delivery agents for gene therapy. Int J Pharm. doi: 10.1016/j.ijpharm.2020.119078.Kawaguchi, T. et al. (2019). Changes to the TDP-43 and FUS Interactomes Induced by DNA Damage. J Proteome Res. doi: 10.1021/acs.jproteome.9b00575.Bovone, G. et al. (2019). Flow‐based reactor design for the continuous production of polymeric nanoparticles. AIChE J. doi: 10.1002/aic.16840.Bertsch, P. et al. (2019). Injectable Biocompatible Hydrogels from Cellulose Nanocrystals for Locally Targeted Sustained Drug Release. ACS Appl Mater Interfaces. doi: 10.1021/acsami.9b15896.Villar-Alvarez, E. et al. (2019). siRNA Silencing by Chemically Modified Biopolymeric Nanovectors. ACS Omega. 4(2):3904-3921. doi: 10.1021/acsomega.8b02875.Encinas-Basurto, D. et al. (2018). Hybrid folic acid-conjugated gold nanorods-loaded human serum albumin nanoparticles for simultaneous photothermal and chemotherapeutic therapy. Mater Sci Eng C Mater Biol Appl. 91:669-678. doi: 10.1016/j.msec.2018.06.002.Pikabea, A. et al. (2018). pH-controlled doxorubicin delivery from PDEAEMA-based nanogels. Journal of Molecular Liquids. 266:321-329. doi: 10.1016/j.molliq.2018.06.068.Cambón, A. et al. (2018). Characterization of the complexation phenomenon and biological activity in vitro of polyplexes based on Tetronic T901 and DNA. J Colloid Interface Sci. 519:58-70. doi: 10.1016/j.jcis.2018.02.051.Lin, Y. et al. (2018). Activatable cell-biomaterial interfacing with photo-caged peptides. Chem Sci. 10(4):1158-1167. doi: 10.1039/c8sc04725a.Wu, C. et al. (2018). Rationally Designed Polycationic Carriers for Potent Polymeric siRNA-Mediated Gene Silencing. ACS Nano. 12(7):6504-6514. doi: 10.1021/acsnano.7b08777.Giampietro, C. et al. (2017). Cholesterol impairment contributes to neuroserpin aggregation. Sci Rep. 7:43669. doi: 10.1038/srep43669.Ganini, D. et al. (2017). Fluorescent proteins such as eGFP lead to catalytic oxidative stress in cells. Redox Biol. 12:462-468. doi: 10.1016/j.redox.2017.03.002.Du, X. et al. (2017). In situ generated D-peptidic nanofibrils as multifaceted apoptotic inducers to target cancer cells. Cell Death Dis. doi: 10.1038/cddis.2016.466.Li, G. et al. (2017). Patching of Lipid Rafts by Molecular Self-Assembled Nanofibrils Suppresses Cancer Cell Migration. Chem. 2(2):283–298. doi: 10.1016/j.chempr.2017.01.002.Chen, X. et al. (2016). Patterned poly (dopamine) films for enhanced cell adhesion. Bioconj. Chem. doi:10.1021/acs.bioconjchem.6b00544.Castleberry, S. A. et al. (2016). Nanolayered siRNA delivery platforms for local silencing of CTGF reduce cutaneous scar contraction in third-degree burns. Biomaterials. doi:10.1016/j.biomaterials.2016.04.007.Alidori, S. et al. (2016). Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury. Sci Transl Med. doi:10.1126/scitranslmed.aac9647.Shopsowitz, K. E. et al. (2015). Periodic-shRNA molecules are capable of gene silencing, cytotoxicity and innate immune activation in cancer cells. Nucleic Acids Res. doi:10.1093/nar/gkv1488.Castleberry, S. A. et al. (2015). Self-assembled wound dressings silence MMP-9 and improve diabetic wound healing in vivo. Adv Mater. doi:10.1002/adma.201503565.Dosta, P. et al. (2015). Surface charge tunability as a powerful strategy to control electrostatic interaction for high efficiency silencing, using tailored oligopeptide-modified Poly (beta-amino ester) s (PBAEs). Acta Biomater. doi: 10.1016/j.actbio.2015.03.029. Topete, A. et al. (2014). NIR-light active hybrid nanoparticles for combined imaging and bimodal therapy of cancerous cells. J Mater Chem. 2:6967-6977.Weerakkody, D. et al. (2013). Family of pH (low) Insertion Peptides for Tumor Targeting. PNAS. 110:5834-5839.AKR-214 Guidotti, G. et al. (2020). Regenerated wool keratin-polybutylene succinate nanofibrous mats for drug delivery and cells culture. Polym Degrad Stab. doi: 10.1016/j.polymdegradstab.2020.109272.Jung, W.H. et al. (2020). Force-dependent extracellular matrix remodeling by early-stage cancer cells alters diffusion and induces carcinoma-associated fibroblasts. Biomaterials. 234:119756. doi: 10.1016/j.biomaterials.2020.119756.Decataldo, F. et al. (2019). Organic Electrochemical Transistors for Real‐Time Monitoring of In Vitro Silver Nanoparticle Toxicity. Advanced Biosystems. doi: 10.1002/adbi.201900204.Thönnes, S. et al. (2019). Success and efficiency of cell seeding in Avian Tendon Xenografts – A promising alternative for tendon and ligament reconstruction. J Orthop. doi: 10.1016/j.jor.2019.09.010.Yu, D. et al. (2019). Microfluidic preparation, shrinkage, and surface modification of monodispersed alginate microbeads for 3D cell culture. RSC Adv. 9:11101–11110. doi: 10.1039/C9RA01443H.Weems, A.C. et al. (2018). Improving the Oxidative Stability of Shape Memory Polyurethanes Containing Tertiary Amines by the Presence of Isocyanurate Triols. Macromolecules. doi: 10.1021/acs.macromol.8b01925.Liu, S. et al. (2018). Cellular interactions with hydrogel microfibers synthesized via interfacial tetrazine ligation. Biomaterials. 180:24-35. doi: 10.1016/j.biomaterials.2018.06.042.Barbalinardo, M. et al. (2018). Data-Matrix Technology for Multiparameter Monitoring of Cell Cultures. Small Methods. 2(4), 1700377. doi: 10.1002/smtd.201700377.Maglione, M.S. et al. (2018). Fluid Mixing for Low-Power 'Digital Microfluidics' Using Electroactive Molecular Monolayers. Small. 14(10). doi: 10.1002/smll.201703344.Sanchez-Ramos, J. et al (2018). Chitosan-Mangafodipir nanoparticles designed for intranasal delivery of siRNA and DNA to brain. Journal of Drug Delivery Science and Technology. 43: 453-460.Weems, A.C. et al. (2017). Shape memory polyurethanes with oxidation-induced degradation: in vivo and in vitro correlations for endovascular material applications. Acta Biomater. doi: 10.1016/j.actbio.2017.06.030.Bouchlaka MN, et al. (2017). Human Mesenchymal Stem Cell-Educated Macrophages Are a Distinct High IL-6-Producing Subset that Confer Protection in Graft-versus-Host-Disease and Radiation Injury Models. Biol Blood Marrow Transplant. pii: S1083-8791(17)30306-3. doi: 10.1016/j.bbmt.2017.02.018. Pearson, R. A. et al. (2016). Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat Commun. doi:10.1038/ncomms13029.Nash, L. D. et al. (2016). Cold plasma reticulation of shape memory embolic tissue scaffolds. Macromol Rapid Commun. doi:10.1002/marc.201600268.Castleberry, S. A. et al. (2016). Nanolayered siRNA delivery platforms for local silencing of CTGF reduce cutaneous scar contraction in third-degree burns. Biomaterials. doi:10.1016/j.biomaterials.2016.04.007.Castleberry, S. A. et al. (2015). Self-assembled wound dressings silence MMP-9 and improve diabetic wound healing in vivo. Adv Mater. doi:10.1002/adma.201503565.Peak, C. W. et al. (2015). Elastomeric cell-laden nanocomposite microfibers for engineering complex tissues. Cell Mol Bioeng. doi:10.1007/s12195-015-0406-7.Tassoni, A. et al. (2015). Molecular mechanisms mediating retinal reactive gliosis following bone marrow mesenchymal stem cell transplantation. Stem Cells. doi: 10.1002/stem.2095.Scott, C. M. et al. (2015). 3D cell entrapment as a function of the weight percent of peptide-amphiphile hydrogels. Langmuir. doi:10.1021/acs.langmuir.5b00196.Jo, W. et al. (2014). Microfluidic fabrication of cell-derived nanovesicles as endogenous RNA carriers. Lab Chip. 14:1261-1269.AKR-208 Funakoshi-Tago, M. et al. (2020). Coffee decoction enhances tamoxifen proapoptotic activity on MCF-7 cells. Sci Rep. 10(1):19588. doi: 10.1038/s41598-020-76445-z.Boutin, M.E. et al. (2018). A high-throughput imaging and nuclear segmentation analysis protocol for cleared 3D culture models. Sci Rep. 8(1):11135. doi: 10.1038/s41598-018-29169-0. 주문정보 견적문의 제품담기 주문정보 - Cat No, PRODUCT, SIZE, 수량 등 항목으로 구성되어있습니다. Product Cat.No. Size Maker Qty Data Sheet MSDS 전체보기 추천제품 관련제품 견적문의 제품담기 주문정보 - Cat No, PRODUCT, SIZE, 수량 등 항목으로 구성되어있습니다. Product Cat.No. Size Maker Qty Data Sheet MSDS 전체보기 자료 웨비나/Video