고마바이오텍(주)
Category 전체보기
전기영동 > 단백질 전기영동 전기영동 > 헥산 전기영동
Cat. No.전체보기

검색 결과가 없습니다.

Product전체보기

검색 결과가 없습니다.

Brand전체보기

검색 결과가 없습니다.

제품 상세
Oxidative Stress | DNA/RNA Damage and Repair Kit 이미지

Oxidative Stress | DNA/RNA Damage and Repair Kit

8-OHG, 8-OHdG, AP site, DSB(Double-Strand Break)등 DNA 손상을 측정하는 kit을 소개합니다.

8-OHG RNA Damage ELISA (#STA-325) 

 

  • 산화에 의한 RNA 손상의 ubiquitous marker인 8-OHG를 ELISA 방법으로 정량합니다.
  • 검출범위 : 300 pg/mL - 40 ng/mL of 8-OHG
  • Urine, serum, cerebrospinal fluid, cell, tissue등의 샘플에 적용됩니다. 

 

 

 

8-OHdG DNA Damage ELISA (#STA-320)

 

  • 산화에 의한 DNA 손상의 ubiquitous marker인 8-OHdG를 ELISA 방법으로 정량합니다.
  • 검출범위 : 100 pg/mL of 8-OHG
  • Urine, serum, cell, tissue등의 샘플에 적용됩니다. 

 

 

 

AP Sites Quantitation Kit (#STA-324)

  

  • 손상 후 복구되지 않은 DNA base AP (apurinic/apyrimidinic) sites를 측정합니다.
  • Aldehyde Reactive Probe (ARP)를 이용하여 AP site의 open ring에 있는 aldehyde group과 반응시키고, Biotin, Streptavidin-Enzyme 과정으로 가시화 합니다. 
  • 검출 범위 : 4-40 AP sites in 10^5 bp DNA 

 

 

 

DNA Double-Strand Break Assay (#STA-321)

  

  • DNA의 double-strand break (DSB)는 DNA damage중 가장 위험한 타입의 손상으로, 세포는 histone varient H2AX를 인산화시키고 serine 잔기의 인산화는 chromatin 응축을 유발합니다.
  • phosphorylated histone H2AX의 면역형광 염색을 통해 세포내 존재하는 DSB를 측정합니다.

 

 
 

DNA Double-Strand Break Formation in A549 Cells. A549 cells were seeded at 50,000 cells/well overnight. 

(A) Untreated cells. (B) Cells treated with 100 µM Etoposide for 1 hour. Immunofluorescence staining was then performed according to the Assay Protocol. 

 

 

 

 

사용 논문

 

STA-325  
    1. Li, H. et al. (2021). Striatal oxidative damages and neuroinflammation correlate with progression and survival of Lewy body and Alzheimer diseases. Neural Regen Res17(4):867-874. doi: 10.4103/1673-5374.322463.
    2. Pappas-Gogos, G. et al. (2021). Urine 8-Hydroxyguanine (8-OHG) in Patients Undergoing Surgery for Colorectal Cancer. J Invest Surg. doi: 10.1080/08941939.2021.1904466.
    3. Li, H. et al. (2019). The Interactions of Dopamine and Oxidative Damage in the Striatum of Neurodegenerative Diseases Patients. J Neurochem. doi: 10.1111/jnc.14898.
    4. Gmitterová, K. et al. (2018). DNA versus RNA oxidation in Parkinson's disease: Which is more important?. Neurosci Lett662:22-28. doi: 10.1016/j.neulet.2017.09.048.
    5. Siegfried,C.J. et al (2017).Effects of Vitrectomy and Lensectomy on Older Rhesus Macaques: Oxygen Distribution, Antioxidant Status, and Aqueous Humor Dynamics. Invest Ophthalmol Vis Sci58(10):4003-4014. doi: 10.1167/iovs.17-21890.
    6. Sliwinska, A. et al. (2016). The levels of 7, 8-dihydrodeoxyguanosine (8-oxoG) and 8-oxoguanine DNA glycosylase 1 (OGG1)–A potential diagnostic biomarkers of Alzheimer's disease. Neurol Sci. 368:155-159.
    7. Belenky, P. et al. (2015).  Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep. 13:968-980.
    8. Tsai, C. H. et al. (2015). Transcriptional Analysis of Deinococcus radiodurans Reveals Novel Small RNAs That Are Differentially Expressed under Ionizing Radiation. Appl Environ Microbiol. 81:1754-1764.
    9. Giannakopoulos, B. et al. (2014). Deletion of the antiphospholipid syndrome autoantigen β2‐glycoprotein I potentiates the lupus autoimmune phenotype in a Toll‐like receptor 7–mediated murine model. Arthritis Rheumatol. 66:2270-2280.
    10. Bazin, J. et al. (2011). Targeted mRNA Oxidation Regulates Sunflower Seed Dormancy Alleviation during Dry after-Ripening. Plant Cell 23:2196-2208. 
STA-320  
    1. Całyniuk, Z. et al. (2021). Selected metabolic, epigenetic, nitration and redox parameters in turkeys fed diets with different levels of arginine and methionine. Ann. Anim. Sci. doi: 10.2478/aoas-2021-0069.
    2. Chan, T.K. et al. (2021). Polycyclic aromatic hydrocarbons regulate the pigmentation pathway and iinduce DNA damage responses in keratinocytes, a process driven by systemic immunity. J Dermatol Sci. doi: 10.1016/j.jdermsci.2021.09.003.
    3. Kim, H.C. et al. (2021). Glycyrrhizin ameliorating sterile inflammation induced by low-dose radiation exposure. Sci Rep11(1):18356. doi: 10.1038/s41598-021-97800-8.
    4. Li, H. et al. (2021). Striatal oxidative damages and neuroinflammation correlate with progression and survival of Lewy body and Alzheimer diseases. Neural Regen Res17(4):867-874. doi: 10.4103/1673-5374.322463.
    5. Pérez-Soto, E. et al. (2021). Proinflammatory and Oxidative Stress States Induced by Human Papillomavirus and Chlamydia trachomatis Coinfection Affect Sperm Quality in Asymptomatic Infertile Men. Medicina (Kaunas)57(9):862. doi: 10.3390/medicina57090862.
    6. Boudjema, J. et al. (2021). Metal enriched quasi-ultrafine particles from stainless steel gas metal arc welding induced genetic and epigenetic alterations in BEAS-2B cells. NanoImpact. doi: 10.1016/j.impact.2021.100346.
    7. Li, J. & Min, Y. (2021). Pre-clinical evidence that salinomycin is active against retinoblastoma via inducing mitochondrial dysfunction, oxidative damage and AMPK activation. J Bioenerg Biomembr53(5):513-523. doi: 10.1007/s10863-021-09915-2.
    8. Ognik, K. et al. (2021). The immune status, oxidative and epigenetic changes in tissues of turkeys fed diets with different ratios of arginine and lysine. Sci Rep11(1):15975. doi: 10.1038/s41598-021-95529-y.
    9. Wadikar, D.L. et al. (2021). Assessment of occupational exposure to diesel particulate matter through evaluation of 1-nitropyrene and 1-aminopyrene in surface coal miners, India. Environ Monit Assess193(6):342. doi: 10.1007/s10661-021-09121-y.
    10. Fatima, S. et al. (2021). Epigallocatechin gallate and coenzyme Q10 attenuate cisplatin-induced hepatotoxicity in rats via targeting mitochondrial stress and apoptosis. J Biochem Mol Toxicol. doi: 10.1002/jbt.22701.
    11. Ahmad, A. et al. (2021). Swertia chirayita suppresses the growth of non-small cell lung cancer A549 cells and concomitantly induces apoptosis via downregulation of JAK1/STAT3 pathway. Saudi J Biol Sci. doi: 10.1016/j.sjbs.2021.06.085.
    12. Xue, Z. et al. (2021). Isorhapontigenin ameliorates cerebral ischemia/reperfusion injury via modulating Kinase Cε/Nrf2/HO-1 signaling pathway. Brain Behav. doi: 10.1002/brb3.2143.
    13. Jiang, J. et al. (2021). Impact of intrauterine fetal resuscitation with oxygen on oxidative stress in the developing rat brain. Sci Rep11(1):9798. doi: 10.1038/s41598-021-89299-w.
    14. Jacobson, M.H. et al. (2021). Organophosphate pesticides and progression of chronic kidney disease among children: A prospective cohort study. Environ Int155:106597. doi: 10.1016/j.envint.2021.106597.
    15. Oladosu, W.O. et al. (2021). Evaluating the Effects of Life styles and History of Exposure to Radiation on Levels of Significance and Severity of Sperm DNA Damage among Males with Infertility Using 8-Hydroxydeoxyguanosine (8-OHDG) as a Marker. EC Endocrinology and Metabolic Research6(4): 15-27.
    16. Shaw, P. et al. (2021). Cold Atmospheric Plasma Increases Temozolomide Sensitivity of Three-Dimensional Glioblastoma Spheroids via Oxidative Stress-Mediated DNA Damage. Cancers13(8):1780. doi: 10.3390/cancers13081780.
    17. Sener, T.E. et al. (2020). Effects of resveratrol against scattered radiation-induced testicular damage in rats. Turk Biyokim Derg. doi: 10.1515/tjb-2020-0320.
    18. Corinaldesi, C. et al. (2021). Multiple impacts of microplastics can threaten marine habitat-forming species. Commun Biol. 4(1):431. doi: 10.1038/s42003-021-01961-1.
    19. Wahjuni, S. et al. (2021). Green Mustard Ethanol Extract (Brassica Rapa L.) Leaf Can Cell Damage (8-Hydroxy-2-Dioxiguanosine) In The Wistar Rat Hyperglicemic. IOP Conf. Ser.: Earth Environ. Sci. doi: 10.1088/1755-1315/709/1/012046.
    20. Jankowski, J. et al. (2021). The effect of different dietary ratios of lysine, arginine and methionine on protein nitration and oxidation reactions in turkey tissues and DNA. Animal. doi: 10.1016/j.animal.2021.100183.
    21. Xie, W. et al. (2021). Pterostilbene accelerates wound healing by modulating diabetes-induced estrogen receptor β suppression in hematopoietic stem cells. Burns Trauma. doi: 10.1093/burnst/tkaa045.
    22. Guo, L. et al. (2021). Nephroprotective Effect of Adropinin Against Streptozotocin-Induced Diabetic Nephropathy in Rats: Inflammatory Mechanism and YAP/TAZ Factor. Drug Des Devel Ther15:589-600. doi: 10.2147/DDDT.S294009.
    23. Lu, Y. et al. (2021). ShengMai-San Attenuates Cardiac Remodeling in Diabetic Rats by Inhibiting NOX-Mediated Oxidative Stress. Diabetes Metab Syndr Obes. doi: 10.2147/DMSO.S287582.
    24. Ohira, H. et al. (2021). Alteration of oxidative-stress and related marker levels in mouse colonic tissues and fecal microbiota structures with chronic ethanol administration: Implications for the pathogenesis of ethanol-related colorectal cancer. PLoS One16(2):e0246580. doi: 10.1371/journal.pone.0246580.
    25. Cortés, S. et al. (2021). A Positive Relationship between Exposure to Heavy Metals and Development of Chronic Diseases: A Case Study from Chile. Int J Environ Res Public Health18(4):1419. doi: 10.3390/ijerph18041419.
    26. Yang, S.B. et al. (2021). A Hepatitis B Virus-Derived Peptide Exerts an Anticancer Effect via TNF/iNOS-producing Dendritic Cells in Tumor-Bearing Mouse Model. Cancers (Basel)13(3):407. doi: 10.3390/cancers13030407.
    27. Liu, J. et al. (2021). NUPR1 is a critical repressor of ferroptosis. Nat Commun12(1):647. doi: 10.1038/s41467-021-20904-2.
    28. Wang, M. et al. Fluvastatin protects neuronal cells from hydrogen peroxide-induced toxicity with decreasing oxidative damage and increasing PI3K/Akt/mTOR signaling. J Pharm Pharmacol. doi: 10.1093/jpp/rgaa058.
    29. Tascanov, M.B. et al. (2021). Relationships between paroxysmal atrial fibrillation, total oxidant status, and DNA damage. Rev Port Cardiol40(1):5-10. doi: 10.1016/j.repc.2020.05.011.
    30. Nikolova, B. et al. (2020). Redox-related Molecular Mechanism of Sensitizing Colon Cancer Cells to Camptothecin Analog SN38. Anticancer Res40(9):5159-5170. doi: 10.21873/anticanres.14519.
STA-324  
    1. Haider, N. et al. (2021). Signaling defects associated with insulin resistance in non-diabetic and diabetic individuals and modification by sex. J Clin Invest. doi: 10.1172/JCI151818.
    2. Ognik, K. et al. (2021). The immune status, oxidative and epigenetic changes in tissues of turkeys fed diets with different ratios of arginine and lysine. Sci Rep. 11(1):15975. doi: 10.1038/s41598-021-95529-y.
    3. Kim, J.H. et al. (2021). Nordihydroguaiaretic Acid as a Novel Substrate and Inhibitor of Catechol O-Methyltransferase Modulates 4-Hydroxyestradiol-Induced Cyto- and Genotoxicity in MCF-7 Cells. Molecules26(7):2060. doi: 10.3390/molecules26072060.
    4. Psyrri, A. et al. (2021). The DNA damage response network in the treatment of head and neck squamous cell carcinoma. ESMO Open6(2):100075. doi: 10.1016/j.esmoop.2021.100075.
    5. Dettleff, P. et al. (2020). Physiological and molecular responses to thermal stress in red cusk-eel (Genypterus chilensis) juveniles reveals atrophy and oxidative damage in skeletal muscle. J Therm Biol. doi: 10.1016/j.jtherbio.2020.102750.
    6. Ognik, K. et al. (2020). The effect of different dietary ratios of lysine and arginine in diets with high or low methionine levels on oxidative and epigenetic DNA damage, the gene expression of tight junction proteins and selected metabolic parameters in Clostridium perfringens-challenged turkeys. Vet Res51(1):50. doi: 10.1186/s13567-020-00776-y.
    7. Huo, X. et al. (2020). In Barrett's Epithelial Cells, Weakly Acidic Bile Salt Solutions Cause Oxidative DNA Damage with Response and Repair Mediated by p38. Am J Physiol Gastrointest Liver Physiol. doi: 10.1152/ajpgi.00329.2019.
    8. Sherwood, T.A. et al. (2019). Nonlethal Biomarkers of Oxidative Stress in Oiled Sediment Exposed Southern Flounder (Paralichthys lethostigma): Utility for Field-Base Monitoring Exposure and Potential Recovery. Environ Sci Technol53(24):14734-14743. doi: 10.1021/acs.est.9b05930.
    9. Rivas-Aravena, A. et al. (2019). Transcriptomic response of rainbow trout (Oncorhynchus mykiss) skeletal muscle to Flavobacterium psychrophilum. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics. 100596. doi:10.1016/j.cbd.2019.100596.
    10. Thai, S.F. et al. (2019). Differential Effects of Nano TiO₂ and CeO₂ on Normal Human Lung Epithelial Cells In Vitro. J Nanosci Nanotechnol. 19(11):6907-6923. doi: 10.1166/jnn.2019.16737.
    11. Norambuena, J. et al. (2019). Superoxide Dismutase and Pseudocatalase Increase Tolerance to Hg(II) in Thermus thermophilus HB27 by Maintaining the Reduced Bacillithiol Pool. MBio10(2). pii: e00183-19. doi: 10.1128/mBio.00183-19.
    12. Souliotis, V.L. et al. (2019). DNA damage accumulation, defective chromatin organization and deficient DNA repair capacity in patients with rheumatoid arthritis. Clin Immunol203:28-36. doi: 10.1016/j.clim.2019.03.009.
    13. Patchsung, M. et al. (2018). Alu siRNA to increase Alu element methylation and prevent DNA damage. Epigenomics10(2):175-185. doi: 10.2217/epi-2017-0096.
    14. Mishra, A. et al. (2018). Oxidative Stress-Mediated Overexpression of Uracil DNA Glycosylase in Leishmania donovani Confers Tolerance against Antileishmanial Drugs. Oxid Med Cell Longev. 2018:4074357. doi: 10.1155/2018/4074357.
    15. Thakur, S., et al. (2017). APE1 modulates cellular responses to organophosphate pesticide-induced oxidative damage in non-small cell lung carcinoma A549 cells. Molecular and Cellular Biochemistry.  441:Issue 1–2, pp 201–216.
    16. Mullick M, et al. (2017). d-Alanine 2, Leucine 5 Enkephaline (DADLE)-mediated DOR activation augments human hUCB-BFs viability subjected to oxidative stress via attenuation of the UPR. Stem Cell Res22:20-28. doi: 10.1016/j.scr.2017.05.009.
    17. Periyasamy, M. et al (2017). p53 controls expression of the DNA deaminase APOBEC3B to limit its potential mutagenic activity in cancer cells. Nucleic Acids Research. doi: 10.1093/nar/gkx721.
    18. Stasiolek, M. et al. (2017). The molecular effect of diagnostic absorbed doses from 131I on papillary thyroid cancer cells in vitro. Molecules. doi:10.3390/molecules22060993.
    19. Sapoznik, S. et al. (2016). Activation-induced cytidine deaminase links ovulation-induced inflammation and serous carcinogenesisNeoplasia. 18:90-99.
    20. Garama, D. J. et al. (2015). A synthetic lethal interaction between glutathione synthesis and mitochondrial reactive oxygen species provides a tumor specific vulnerability dependent on STAT3Mol Cell Biol. doi:10.1128/MCB.00541-15.
    21. Guzmán-Guillén, R. et al. (2015). Beneficial effects of vitamin E supplementation against the oxidative stress on Cylindrospermopsin-exposed tilapia (Oreochromis niloticus). Toxicon.  104:34-42.
    22. Ferreira, E. et al. (2015). Glyceraldehyde-3-phosphate dehydrogenase is required for efficient repair of cytotoxic DNA lesions in Escherichia coli. Int J Biochem Cell Biol. 60:202-212.
    23. Zhao, K. et al. (2014).  S-sulfhydration of MEK1 leads to PARP-1 activation and DNA damage repair.  EMBO Rep. 15:792-800.
    24. Mohammad, M. K. et al. (2014).  Watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice modulates oxidative damage induced by low dose X-ray in mice. Biomed Res Int2014:512834.
    25. Zafiropoulos, A. et al. (2014).  Cardiotoxicity in rabbits after a low-level exposure to diazinonpropoxur, and chlorpyrifosHum Exp Toxicol.33:1241-1252.
    26. Messaoudi, N. et al. (2013). Global Stress Response in a Prokaryotic Model of DJ-1-Associated Parkinsonism. J.Bacteriol. 195:11
    27. Zaika, E. et al. (2011). p73 Protein Regulates DNA Damage Repair. FASEB J. 25:4406-4414.
STA-321  
    1. Liu, Q. et al. (2021). Modular Assembly of Tumor-Penetrating and Oligomeric Nanozyme Based on Intrinsically Self-Assembling Protein Nanocages. Adv Mater. doi: 10.1002/adma.202103128.
    2. Tessonnier, T. et al. (2021). FLASH dose-rate helium ion beams: first in vitro investigations. Int J Radiat Oncol Biol Phys. doi: 10.1016/j.ijrobp.2021.07.1703.
    3. Ekuban, A. et al. (2021). Role of Macrophages in Cytotoxicity, Reactive Oxygen Species Production and DNA Damage in 1,2-Dichloropropane-Exposed Human Cholangiocytes In Vitro. Toxics9(6):128. Doi: 10.3390/toxics9060128.
    4. Park, J.Y. et al. (2020). Targeted Therapy of Hepatocellular Carcinoma Using Gemcitabine-Incorporated GPC3 Aptamer. Pharmaceutics12(10):E985. doi: 10.3390/pharmaceutics12100985.
    5. Zhong, C. et al. (2020). Mechanism for enhanced transduction of hematopoietic cells by recombinant adeno‐associated virus serotype 6 vectors. FASEB J. doi: 10.1096/fj.201902875r.
    6. Yuan, Y. et al. (2020). Deterioration of hematopoietic autophagy is linked to osteoporosis. Aging Cell. doi: 10.1111/acel.13114.
    7. Han, S. et al. (2019). Secretome analysis of patient-derived GBM tumor spheres identifies midkine as a potent therapeutic target. Exp Mol Med51(12):147. doi: 10.1038/s12276-019-0351-y.
    8. Zhang, Y. et al. (2019). N-Acetyl Cysteine as a Novel Polymethyl Methacrylate Resin Component: Protection against Cell Apoptosis and Genotoxicity. Oxidative Medicine and Cellular Longevity. doi: 10.1155/2019/1301736.
    9. Wang, Z. et al. (2019). Changes in the Proliferation Rate, Clonogenicity, and Radiosensitivity of Cultured Cells During and After Continuous Low-Dose-Rate Irradiation. Dose Response17(2):1559325819842733. doi: 10.1177/1559325819842733.
    10. Izumi, Y. et al. (2019). Suplatast tosilate reduces radiation-induced lung injury in mice through suppression of oxidative stress. Free Radic Biol Med136:52-59. doi: 10.1016/j.freeradbiomed.2019.03.024.
    11. Nakade, S. et al. (2018). Biased genome editing using the local accumulation of DSB repair molecules system. Nat Commun9(1):3270. doi: 10.1038/s41467-018-05773-6.
    12. Douiev, L. et al. (2018). The pathomechanism of cytochrome c oxidase deficiency includes nuclear DNA damage. Biochim Biophys Acta Bioenerg1859(9):893-900. doi: 10.1016/j.bbabio.2018.06.004.
    13. Douiev, L. et al. (2018). Cytochrome c oxidase deficiency, oxidative stress, possible antioxidant therapy and link to nuclear DNA damage. Eur J Hum Genet26(4):579-581. doi: 10.1038/s41431-017-0047-5.
    14. Shirasugi, M. et al. (2016). Normal human gingival fibroblasts undergo cytostasis and apoptosis after long-term exposure to butyric acid. Biochem. Biophys. Res. Commun. doi:10.1016/j.bbrc.2016.11.168.
    15. Wu, S. T. et al. (2016). Cellular effects induced by 17-β-estradiol to reduce the survival of renal cell carcinoma cells. J Biomed Sci23:67.
    16. Cheng, K. P. et al. (2016). Blue light modulates murine microglial gene expression in the absence of optogenetic protein expression. Sci Rep. doi:10.1038/srep21172.
    17. Ohashi, S. et al. (2014). Preclinical validation of talaporfin sodium-mediated photodynamic therapy for esophageal squamous cell carcinoma. PLoS One. 9:e103126.
    18. Dokic, I. et al. (2014). High resistance to X-rays and therapeutic carbon ions in glioblastoma cells bearing dysfunctional ATM associates with intrinsic chromosomal instability. Int J Radiat Biol. 91:157-165.
    19. Zhuge, C. C. et al. (2014). Fullerenol protects retinal pigment epithelial cells from oxidative stress–induced premature senescence via activating SIRT1Invest Ophthalmol Vis Sci. 55:4628-4638.
    20. Matsuda, S. et al. (2014). An easy-to-use genotoxicity assay using EGFP-MDC1-expressing human cells. Gene Environ. 36:17-28.
    21. Edwards, A.K. et al. (2014).  A peptide inhibitor of synuclein-g reduces neovascularization of human endometriotic lesions.  Mol Hum Reprod. 10.1093/molehr/gau054.

 

주문정보

주문정보 - Cat No, PRODUCT, SIZE, 수량 등 항목으로 구성되어있습니다.
  Product Cat.No. Size Maker Qty Data Sheet MSDS
OxiSelect™ BPDE DNA Adduct ELISA Kit STA-357 96 assays CELL BIOLABS
OxiSelect™ DNA Double Strand Break (DSB) Staining Kit, Trial Size STA-321-T 20 assays CELL BIOLABS
OxiSelect™ DNA Double-Strand Break (DSB) Staining Kit STA-321 100 assays CELL BIOLABS
OxiSelect™ Oxidative DNA Damage ELISA Kit (8-OHdG Quantitation) (1 plate) STA-320 96 assays CELL BIOLABS
OxiSelect™ Oxidative DNA Damage ELISA Kit (8-OHdG Quantitation) (5 plates) STA-320-5 5x96 assays CELL BIOLABS
OxiSelect™ Oxidative DNA Damage ELISA Kit (8-OHdG Quantitation), Trial Size STA-320-T 32 assays CELL BIOLABS
OxiSelect™ Oxidative DNA Damage Quantitation Kit (AP sites) STA-324 50 assays CELL BIOLABS
OxiSelect™ Oxidative RNA Damage ELISA Kit (8-OHG Quantitation) (5x96 tests) STA-325-5 5x96 assays CELL BIOLABS
OxiSelect™ Oxidative RNA Damage ELISA Kit (8-OHG Quantitation) (96 tests) STA-325 96 assays CELL BIOLABS
8 Hydroxyguanosine (8-OHdG) ELISA Kit ARG80911 96 wells ARIGO
GSI Bovine (cattle) UCP2 ELISA Kit GR112039 96 wells GENORISE
GSI Bovine (cattle) UCP2 ELISA Kit (2 plates) GR112039-2 2x96 wells GENORISE
Mouse Anti-Proliferating Cell Nuclear Antigen (PCNA) Ig's ELISA kit, 96 tests, Quantitative 5010 1 kit ALPHA DIAGNOSTICS
Nori Bovine PCNA ELISA Kit GR112022 96 wells GENORISE
Nori Canine PCNA ELISA Kit GR115025 96 wells GENORISE
Nori Canine UCP2  ELISA Kit GR115434 96-well GENORISE
Nori Equine PCNA ELISA Kit GR106500 96 wells GENORISE
Nori Equine PCNA ELISA Kit-2 Plates GR106500-2 2x96 wells GENORISE
Nori Human PCNA ELISA Kit GR111032 96 wells GENORISE
Nori Human PCNA ELISA Kit-2 Plates GR111032-2 2x96 wells GENORISE
Nori® Bovine Sirtuin 1 ELISA Kit GR112128 96 wells GENORISE
Nori® Bovine UCP2 ELISA Kit GR112364 96 wells GENORISE
Nori® Canine sirtuin 1 ELISA Kit GR115239 96 wells GENORISE
Nori® Caprine Sirtuin 1 ELISA Kit GR218065 96-well GENORISE
Nori® Chicken Sirtuin 1 ELISA Kit GR114283 96-well GENORISE
Nori® Chicken UCP2 ELISA Kit GR114019 96 wells GENORISE
Nori® Chicken UCP2 ELISA Kit- 2 Plates GR114019-2 2x96 wells GENORISE
Nori® Donkey Sirtuin 1 ELISA Kit GR170208 96-well GENORISE
Nori® Duck Sirtuin 1 ELISA Kit GR149158 96-well GENORISE
Nori® Duck UCP2 ELISA Kit GR149042 96 wells GENORISE
Nori® Equine 8-OHdG ELISA Kit GR106935 96 wells GENORISE
Nori® Equine Sirtuin 1 ELISA Kit GR106933 96 wells GENORISE
Nori® Equine UCP2 ELISA Kit GR106574 96 wells GENORISE
Nori® Equine UCP2 ELISA Kit- 2 Plates GR106574-2 2x96 wells GENORISE
Nori® Feline Sirtuin 1 ELISA Kit GR188380 96-well GENORISE
Nori® Feline UCP2 ELISA Kit GR188024 96 wells GENORISE
Nori® Ferret Sirtuin 1 ELISA Kit GR201165 96-well GENORISE
Nori® Ferret UCP2 ELISA Kit GR201016 96-well GENORISE
Nori® Goose Sirtuin 1 ELISA Kit GR173055 96-well GENORISE
Nori® Guinea Pig Sirtuin 1 ELISA Kit GR171323 96-well GENORISE
Nori® Guinea Pig UCP2 ELISA Kit GR171238 96 wells GENORISE
Nori® Hamster Sirtuin 1 ELISA Kit GR172324 96-well GENORISE
Nori® Hamster UCP2 ELISA Kit GR172024 96 wells GENORISE
Nori® Human Sirtuin 1 ELISA Kit GR111450 96 wells GENORISE
Nori® Human UCP2 ELISA Kit GR111092 96 wells GENORISE
Nori® Human UCP2 ELISA Kit- 2 Plates GR111092-2 2x96 wells GENORISE
Nori® Monkey Sirtuin 1 ELISA Kit GR169347 96-well GENORISE
Nori® Monkey UCP2 ELISA Kit GR169281 96 wells GENORISE
Nori® Mouse UCP2 ELISA Kit GR117021 96 wells GENORISE
Nori® Porcine UCP2 ELISA Kit GR113072 96 wells GENORISE
전체보기
Maker
CELL BIOLABS
Cat.No.
STA-357
Product
OxiSelect™ BPDE DNA Adduct ELISA Kit
Size
96 assays
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
STA-321-T
Product
OxiSelect™ DNA Double Strand Break (DSB) Staining Kit, Trial Size
Size
20 assays
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
STA-321
Product
OxiSelect™ DNA Double-Strand Break (DSB) Staining Kit
Size
100 assays
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
STA-320
Product
OxiSelect™ Oxidative DNA Damage ELISA Kit (8-OHdG Quantitation) (1 plate)
Size
96 assays
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
STA-320-5
Product
OxiSelect™ Oxidative DNA Damage ELISA Kit (8-OHdG Quantitation) (5 plates)
Size
5x96 assays
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
STA-320-T
Product
OxiSelect™ Oxidative DNA Damage ELISA Kit (8-OHdG Quantitation), Trial Size
Size
32 assays
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
STA-324
Product
OxiSelect™ Oxidative DNA Damage Quantitation Kit (AP sites)
Size
50 assays
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
STA-325-5
Product
OxiSelect™ Oxidative RNA Damage ELISA Kit (8-OHG Quantitation) (5x96 tests)
Size
5x96 assays
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
STA-325
Product
OxiSelect™ Oxidative RNA Damage ELISA Kit (8-OHG Quantitation) (96 tests)
Size
96 assays
Qty
Data Sheet
MSDS
Maker
ARIGO
Cat.No.
ARG80911
Product
8 Hydroxyguanosine (8-OHdG) ELISA Kit
Size
96 wells
Qty
Data Sheet
Maker
GENORISE
Cat.No.
GR112039
Product
GSI Bovine (cattle) UCP2 ELISA Kit
Size
96 wells
Qty
Maker
GENORISE
Cat.No.
GR112039-2
Product
GSI Bovine (cattle) UCP2 ELISA Kit (2 plates)
Size
2x96 wells
Qty
Maker
ALPHA DIAGNOSTICS
Cat.No.
5010
Product
Mouse Anti-Proliferating Cell Nuclear Antigen (PCNA) Ig's ELISA kit, 96 tests, Quantitative
Size
1 kit
Qty
MSDS
Maker
GENORISE
Cat.No.
GR112022
Product
Nori Bovine PCNA ELISA Kit
Size
96 wells
Qty
Maker
GENORISE
Cat.No.
GR115025
Product
Nori Canine PCNA ELISA Kit
Size
96 wells
Qty
Maker
GENORISE
Cat.No.
GR115434
Product
Nori Canine UCP2  ELISA Kit
Size
96-well
Qty
Maker
GENORISE
Cat.No.
GR106500
Product
Nori Equine PCNA ELISA Kit
Size
96 wells
Qty
Maker
GENORISE
Cat.No.
GR106500-2
Product
Nori Equine PCNA ELISA Kit-2 Plates
Size
2x96 wells
Qty
Maker
GENORISE
Cat.No.
GR111032
Product
Nori Human PCNA ELISA Kit
Size
96 wells
Qty
Maker
GENORISE
Cat.No.
GR111032-2
Product
Nori Human PCNA ELISA Kit-2 Plates
Size
2x96 wells
Qty
Maker
GENORISE
Cat.No.
GR112128
Product
Nori® Bovine Sirtuin 1 ELISA Kit
Size
96 wells
Qty
Maker
GENORISE
Cat.No.
GR112364
Product
Nori® Bovine UCP2 ELISA Kit
Size
96 wells
Qty
Maker
GENORISE
Cat.No.
GR115239
Product
Nori® Canine sirtuin 1 ELISA Kit
Size
96 wells
Qty
Maker
GENORISE
Cat.No.
GR218065
Product
Nori® Caprine Sirtuin 1 ELISA Kit
Size
96-well
Qty
Maker
GENORISE
Cat.No.
GR114283
Product
Nori® Chicken Sirtuin 1 ELISA Kit
Size
96-well
Qty
Maker
GENORISE
Cat.No.
GR114019
Product
Nori® Chicken UCP2 ELISA Kit
Size
96 wells
Qty
Maker
GENORISE
Cat.No.
GR114019-2
Product
Nori® Chicken UCP2 ELISA Kit- 2 Plates
Size
2x96 wells
Qty
Maker
GENORISE
Cat.No.
GR170208
Product
Nori® Donkey Sirtuin 1 ELISA Kit
Size
96-well
Qty
Maker
GENORISE
Cat.No.
GR149158
Product
Nori® Duck Sirtuin 1 ELISA Kit
Size
96-well
Qty
Maker
GENORISE
Cat.No.
GR149042
Product
Nori® Duck UCP2 ELISA Kit
Size
96 wells
Qty
Maker
GENORISE
Cat.No.
GR106935
Product
Nori® Equine 8-OHdG ELISA Kit
Size
96 wells
Qty
Maker
GENORISE
Cat.No.
GR106933
Product
Nori® Equine Sirtuin 1 ELISA Kit
Size
96 wells
Qty
Maker
GENORISE
Cat.No.
GR106574
Product
Nori® Equine UCP2 ELISA Kit
Size
96 wells
Qty
Maker
GENORISE
Cat.No.
GR106574-2
Product
Nori® Equine UCP2 ELISA Kit- 2 Plates
Size
2x96 wells
Qty
Maker
GENORISE
Cat.No.
GR188380
Product
Nori® Feline Sirtuin 1 ELISA Kit
Size
96-well
Qty
Maker
GENORISE
Cat.No.
GR188024
Product
Nori® Feline UCP2 ELISA Kit
Size
96 wells
Qty
Maker
GENORISE
Cat.No.
GR201165
Product
Nori® Ferret Sirtuin 1 ELISA Kit
Size
96-well
Qty
Maker
GENORISE
Cat.No.
GR201016
Product
Nori® Ferret UCP2 ELISA Kit
Size
96-well
Qty
Maker
GENORISE
Cat.No.
GR173055
Product
Nori® Goose Sirtuin 1 ELISA Kit
Size
96-well
Qty
Maker
GENORISE
Cat.No.
GR171323
Product
Nori® Guinea Pig Sirtuin 1 ELISA Kit
Size
96-well
Qty
Maker
GENORISE
Cat.No.
GR171238
Product
Nori® Guinea Pig UCP2 ELISA Kit
Size
96 wells
Qty
Maker
GENORISE
Cat.No.
GR172324
Product
Nori® Hamster Sirtuin 1 ELISA Kit
Size
96-well
Qty
Maker
GENORISE
Cat.No.
GR172024
Product
Nori® Hamster UCP2 ELISA Kit
Size
96 wells
Qty
Maker
GENORISE
Cat.No.
GR111450
Product
Nori® Human Sirtuin 1 ELISA Kit
Size
96 wells
Qty
Maker
GENORISE
Cat.No.
GR111092
Product
Nori® Human UCP2 ELISA Kit
Size
96 wells
Qty
Maker
GENORISE
Cat.No.
GR111092-2
Product
Nori® Human UCP2 ELISA Kit- 2 Plates
Size
2x96 wells
Qty
Maker
GENORISE
Cat.No.
GR169347
Product
Nori® Monkey Sirtuin 1 ELISA Kit
Size
96-well
Qty
Maker
GENORISE
Cat.No.
GR169281
Product
Nori® Monkey UCP2 ELISA Kit
Size
96 wells
Qty
Maker
GENORISE
Cat.No.
GR117021
Product
Nori® Mouse UCP2 ELISA Kit
Size
96 wells
Qty
Maker
GENORISE
Cat.No.
GR113072
Product
Nori® Porcine UCP2 ELISA Kit
Size
96 wells
Qty
전체보기

추천제품

자료

  • Cell Cycle & DNA Damage Repair Poster

    Cell Cycle & DNA Damage Repair Poster 이미지

    [TOCRIS]

    Cell Cycle & DNA Damage Repair pathway poster 입니다.

웨비나/Video

TOP

제품 문의

0.5 ml Elite Pre-stained Protein Ladder (2 x 0.25 ml) PAL-EPL-500 0.5ml 500
Maker
Cat.No.
Product
Size
Qty
Data Sheet
MSDS

로그인

로그인