고마바이오텍(주)
Category 전체보기
전기영동 > 단백질 전기영동 전기영동 > 헥산 전기영동
Cat. No.전체보기

검색 결과가 없습니다.

Product전체보기

검색 결과가 없습니다.

Brand전체보기

검색 결과가 없습니다.

제품 상세
Alkaline Phosphatase Activity Assay Kit 이미지

Alkaline Phosphatase Activity Assay Kit

Alkaline Phosphatase Staining Kit는 Alkaline Phosphatase (AP)를 이용하여 ES (embryonic stem) Cell 과 EG (embryonic germ) Cell의 분화와 미분화를 모니터링하기위한 kit 입니다.

특징

 

  • ES(embryonic stem) cell과 EG(embryonic germ) cell의 marker로 널리 이용되는 Alkaline Phosphatase (AP)를 통해 세포의 분화, 미분화를 모니터링 합니다.
  • immunocytochemistry staining 및 quantitative colorimetric assay 두가지 방법으로 AP activity를 측정할수 있습니다.
  • 샘플의 species나 stem cell 여부와 상관없이 Alkaline phosphatase를 expression 하는 cell에는 모두 사용할수 있습니다.



종류


StemTAG™ Alkaline Phosphatase Staining Kit (#CBA-300/CBA-306)

  • ICC staining방법으로 ES cell의 분화, 미분화를 측정합니다.
  • CBA-300은 Red로, CBA-306은 Purple로 ES cell을 염색합니다.  

 

 

 


AP staining of ES Cells. Murine embryonic stem cells (ES-D3) are maintained in an undifferentiated stage on gelatin-coated dishes in the presence of LIF, as indicated 
by the high AP activity. To induce differentiation, LIF was withdrawn over a period of several days; various differentiation events were observed (cells became flattened 
and enlarged with reduced proliferation). At the end of day 5, AP staining of undifferentiated cells was performed as described in the Assay Protocol.



AP staining of ES Cells. Murine embryonic stem cells (ES-D3) are maintained in an undifferentiated stage on gelatin-coated dishes in the presence of LIF. 
AP staining of undifferentiated ES cells was performed as described in the Assay Protocol.




StemTAG™ Alkaline Phosphatase Activity Assay Kit (#CBA-301)

  • Cell을 lysis하여 substrate와 반응시킴으로써 ES cell의 Alkaline Phosphatase 활성을 96well에서 측정합니다.
  • 컬러방법으로 측정합니다





사용 논문

CBA-300
CBA-306
 
    1. Lee. R. et al. (2021). Effect of Epidermal Growth Factor on the Colony-formation Ability of Porcine Spermatogonial Germ Cells. Biotechnol Bioproc E. doi: 10.1007/s12257-020-0372-3 (#CBA-300).
    2. Chan, C.D. et al. (2021). Co‑localisation of intra‑nuclear membrane type‑1 matrix metalloproteinase and hypoxia inducible factor‑2α in osteosarcoma and prostate carcinoma cells. Oncol Lett21(2):1-7. doi: 10.3892/ol.2020.12419 (#CBA-306).
    3. Oh, J.E. et al. (2020). Isolation and characterization of dental follicle-derived Hertwig's epithelial root sheath cells. Clin Oral Investig. doi: 10.1007/s00784-020-03481-4 (#CBA-306).
    4. Zhang, Y. et al. (2020). SENP3 Suppresses Osteoclastogenesis by De-conjugating SUMO2/3 from IRF8 in Bone Marrow-Derived Monocytes. Cell Rep30(6):1951-1963.e4. doi: 10.1016/j.celrep.2020.01.036 (#CBA-306).
    5. Li, N. et al. (2020). miR-144-3p suppresses osteogenic differentiation of bone marrow mesenchymal stem cells from patients with aplastic anemia through repression of TET2. Mol Ther Nucleic Acids. doi: 10.1016/j.omtn.2019.12.017 (#CBA-306).
    6. Liao, W. et al. (2019). BMSCs-derived Exosomes Carrying MicroRNA-122-5p Promote Progression of Osteoblasts in Osteonecrosis of the Femoral Head. Clin Sci (Lond). pii: CS20181064. doi: 10.1042/CS20181064 (#CBA-300).
    7. Clarke, D. et al. (2018). Genetically Corrected iPSC-Derived Neural Stem Cell Grafts Deliver Enzyme Replacement to Affect CNS Disease in Sanfilippo B Mice. Mol Ther Methods Clin Dev10:113-127. doi: 10.1016/j.omtm.2018.06.005 (#CBA-300).
    8. Ghosh, N. & Banerjee, E.R. (2017). A Review on Various Tissue Engineering Techniques to Induce Differentiation of Pluripotent Stem Cells. Medical Glory1(2):130-149 (#CBA-300).
    9. Vitali, M.S. et al. (2017). Use of the spectrophotometric color method for the determination of the age of skin lesions on the pig carcass and its relationship with gene expression and histological and histochemical parameters. J. Anim. Sci. 95(9):3873-3884. doi: 10.2527/jas2017.1813 (#CBA-300).
    10. Khan, M.I. et al. (2016). Comparative gene expression profiling of primary and metastatic renal cell carcinoma stem cell-like cancer cells. PLoS One 11:e0165718 (#CBA-306).
    11. Lee, K. H. et al. (2016). In vitro ectopic behavior of porcine spermatogonial germ cells and testicular somatic cells. Cell Reprogramdoi:10.1089/cell.2015.0070 (#CBA-300).
    12. Lee, K. H. et al. (2015). Subculture of germ cell-derived colonies with GATA4-positive feeder cells from neonatal pig testes. Stem Cells Int. 6029271 (#CBA-300).
    13. Jacinto, F. V. et al.  (2015). The nucleoporin Nup153 regulates embryonic stem cell pluripotency through gene silencing. Genes Dev29:1224-1238 (#CBA-300).
    14. Langlois, T. et al. (2014). TET2 deficiency inhibits mesoderm and hematopoietic differentiation in human embryonic stem cells. Stem Cells. 32:2084-2097 (#CBA-300).
    15. Lee, K. H. et al. (2014). Identification and in vitro derivation of spermatogonia in beagle testis. PLoS One. 9:e109963 (#CBA-300).
    16. Manukyan, M. & Singh, P. B. (2014). Epigenome rejuvenation: HP1β mobility as a measure of pluripotent and senescent chromatin ground states. Sci Rep. 4:4789 (#CBA-300).
    17. Lee, J. el al. (2010). Ultraviolet A Regulates Adipogenic Differentiation of Human Adipose Tissue-derived Mesenchymal Stem Cells via Up-Regulation of Kruppel-like Factor 2. J. BiolChem. 285:32647-32656 (#CBA-300).
    18. Izadyar, F. et al. (2008). Generation of multipotent cell lines from a distinct population of male germ line stem cells. Reproduction 135:771-784 (#CBA-300).
CBA-301  
    1. Choi, S. et al. (2020). Biochemical activity of magnesium ions on human osteoblast migration. Biochem Biophys Res Commun. S0006-291X(20)31447-9. doi: 10.1016/j.bbrc.2020.07.057 (#CBA-301).
    2. Chang, P.H. et al. (2020). Chitosan 3D cell culture system promotes naïve-like features of human induced pluripotent stem cells: A novel tool to sustain pluripotency and facilitate differentiation. Biomaterials. doi: 10.1016/j.biomaterials.2020.120575 (#CBA-301).
    3. Ito, K. et al. (2020). MicroRNA-204 regulates osteogenic induction in dental follicle cells. J Dent Sci. doi: 10.1016/j.jds.2019.11.004 (#CBA-301).
    4. Nam, Y.J. et al. (2020). CRH receptor antagonists from Pulsatilla chinensis prevent CRH-induced premature catagen transition in human hair follicles. J Cosmet Dermatol. doi: 10.1111/jocd.13328 (#CBA-301).
    5. Escobar, A. et al. (2019). Mesoporous Titania Coatings with carboxylated Pores for Complexation and slow Delivery of Strontium for osteogenic Induction. Appl Surf Sci. doi: 10.1016/j.apsusc.2019.145172 (#CBA-301).
    6. Escobar, A. et al. (2019). Strontium Titanate (SrTiO3) Mesoporous Coatings for Enhanced Strontium Delivery and Osseointegration on Bone Implants. Adv. Eng. Mater. doi:10.1002/adem.201801210 (#CBA-301).
    7. Li, J. et al. (2019). Osteogenic capacity and cytotherapeutic potential of periodontal ligament cells for periodontal regeneration in vitro and in vivo. PeerJ7:e6589. doi: 10.7717/peerj.6589 (#CBA-301).
    8. Escobar, A. et al. (2019). Antibacterial Mesoporous Titania Films with Embedded Gentamicin and Surface Modified with Bone Morphogenetic Protein 2 to Promote Osseointegration in Bone Implants. Advanced Materials Interfaces. 1801648. doi:10.1002/admi.201801648 (#CBA-301).
    9. Cheng, J. et al. (2019). Stilbene glycoside protects osteoblasts against oxidative damage via Nrf2/HO-1 and NF-κB signaling pathways. Arch Med Sci15(1):196-203. doi: 10.5114/aoms.2018.79937 (#CBA-301).
    10. Tamburaci, S. et al. (2019). Chitosan-hybrid poss nanocomposites for bone regeneration: the effect of poss nanocage on surface, morphology, structure and in vitro bioactivity. Int J Biol Macromol. pii: S0141-8130(19)34171-6. doi: 10.1016/j.ijbiomac.2019.10.006 (#CBA-307).
    11. Kara, A. et al. (2019). Bioactive fish scale incorporated chitosan biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol. 130:266-279. doi: 10.1016/j.ijbiomac.2019.02.067 (#CBA-307).
    12. Guo, Y.C. et al. (2018). Ubiquitin-specific protease USP34 controls osteogenic differentiation and bone formation by regulating BMP2 signaling. EMBO J37(20). pii: e99398. doi: 10.15252/embj.201899398 (#CBA-301).
    13. Xiong, S. et al. (2018). Immunization with Na+/K+ ATPase DR peptide prevents bone loss in an ovariectomized rat osteoporosis model. Biochem Pharmacol156:281-290. doi: 10.1016/j.bcp.2018.08.024 (#CBA-301).
    14. Camp, E. et al. (2018). miRNA-376c-3p Mediates TWIST-1 Inhibition of Bone Marrow-Derived Stromal Cell Osteogenesis and Can Reduce Aberrant Bone Formation of TWIST-1 Haploinsufficient Calvarial Cells. Stem Cells Dev27(23):1621-1633. doi: 10.1089/scd.2018.0083 (#CBA-301).
    15. Yang, F. et al. (2018). Fatty acids modulate the expression levels of key proteins for cholesterol absorption in Caco-2 monolayer. Lipids Health Dis17(1):32. doi: 10.1186/s12944-018-0675-y(#CBA-301).
    16. Abueva, C. D. G. et al. (2018). Multi-channel biphasic calcium phosphate granules as cell carrier capable of supporting osteogenic priming of mesenchymal stem cells. Materials & Design141:142–149. doi:10.1016/j.matdes.2017.12.040 (#CBA-301).
    17. Imai, K. et al. (2017).  Influence of Fluoride Contamination on Titanium Surface on Cell Viability and Cell Differentiation of ES-D3 Cells. J Oral Tissue Engin15(1):35-40. doi: 10.11223/jarde.15.35 (#CBA-301).
    18. Imai, K. et al. (2017). Study of ES Cell Differentiation using Three-dimensional Culture with Silica Fiber. Nano Biomedicine9(2):55-60. doi: 10.11344/nano.9.55 (#CBA-301).
    19. Kamiya, N. et al. (2017). Targeted disruption of NF1 in osteocyte increases FGF23 and osteoid with osteomalacia-like bone phenotype. J Bone Miner Res. doi: 10.1002/jbmr.3155 (#CBA-301).
    20. Tamburaci, S. et al. (2017). Novel poss reinforced chitosan composite membranes for guided bone tissue regeneration. J Mater Sci Mater Med. 29(1):1. doi: 10.1007/s10856-017-6005-5 (#CBA-307).
    21. Jin, H. et al. (2016). Increased activity of TNAP compensates for reduced adenosine production and promotes ectopic calcification in the genetic disease ACDC. Sci. Signal. 9:ra121 (#CBA-301).
    22. Lee, H. Y. et al. (2016). Porcine placenta hydrolysates enhance osteoblast differentiation through their antioxidant activity and effects on ER stress. BMC Complement Altern Med. doi:10.1186/s12906-016-1274-y (#CBA-301).
    23. Choi, H. Y. et al. (2016). Efficient mRNA delivery with graphene oxide-polyethylenimine for generation of footprint-free human induced pluripotent stem cells. J Control Release. 235:222-235 (#CBA-301).
    24. Pengjam, Y. et al. (2016). Anthraquinone glycoside aloin induces osteogenic initiation of MC3T3-E1 cells: Involvement of MAPK mediated wnt and bmp signaling. Biomol Ther24:123-131 (#CBA-301).
    25. Yue, Y. et al. (2015). Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus. Hum Mol Genet. doi:10.1093/hmg/ddv310 (#CBA-301).
    26. Pino-Barrio, M. J. et al. (2015). V-myc immortalizes human neural stem cells in the absence of pluripotency-associated traits. PLoS One. 10:e0118499 (#CBA-301).
    27. Pan, X. et al. (2015). AAV-8 is more efficient than AAV-9 in transducing neonatal dog heart. Hum Gene Ther Methodsdoi:10.1089/hgtb.2014.128 (#CBA-301).
    28. Salem, O. et al. (2014). Naproxen affects osteogenesis of human mesenchymal stem cells via regulation of Indian hedgehog signaling molecules. Arthritis Res Ther. 16:R152 (#CBA-301).
    29. Guo, L. et al. (2014). Effects of erythropoietin on osteoblast proliferation and function. Clin Exp Med. 14:69-76 (#CBA-301).
    30. Dong, Y. et al. (2014). NOTCH-mediated maintenance and expansion of human bone marrow stromal/stem cells: a technology designed for orthopedic regenerative medicine. Stem Cells Transl Med3:1456-1466 (#CBA-301).

CBA-302

(단종)

 
    1. Imai, K. et al. (2019). Effects of Experimental Silver Alloy Containing Indium on the Differentiation of Mouse ES Cells using Artificial Saliva. AATEX24(2):67-74. doi: 10.11232/aatex.24.67 (#CBA-302).
    2. Imai, K. et al. (2019). Influence of Fluoride-corroded Ti-6Al-4V Alloy on Cell differentiation and Cell Viability. Nano Biomedicine11(1):29-36 (#CBA-302).
    3. Moon, S., et al. (2017). Suppressive role of OGT-mediated O-GlcNAcylation of BAP1 in retinoic acid signaling. Biochem Biophys Res Commun. pii: S0006-291X(17)31574-7. doi: 10.1016/j.bbrc.2017.08.029 (#CBA-302).
    4. Fernández-Arroyo, S. et al. (2016). Activation of the methylation cycle in cells reprogrammed into a stem cell-like state.Oncoscience2:958-967 (#CBA-302).

주문정보

주문정보 - Cat No, PRODUCT, SIZE, 수량 등 항목으로 구성되어있습니다.
  Product Cat.No. Size Maker Qty Data Sheet MSDS
StemTAG™ Alkaline Phosphatase Activity Assay Kit, Colorimetric CBA-301 100 assays CELL BIOLABS
StemTAG™ Alkaline Phosphatase Staining Kit (Purple) CBA-306 100 assays CELL BIOLABS
StemTAG™ Alkaline Phosphatase Staining Kit (Red) CBA-300 100 assays CELL BIOLABS
Alkaline Phosphatase Activity Assay Kit (Colorimetric) ARG81239 100 assay ARIGO
ALP / Alkaline Phosphatase Assay Kit ARG81296 250 tests ARIGO
Genorise® Alkaline Phosphatase Activity Colorimetric Assay Kit GR107015 100 tests GENORISE
Genorise® Alkaline Phosphatase Activity Fluorometric Assay Kit GR107016 100 tests GENORISE
Genorise® Alkaline Phosphatase Staining Kit GR107045 100 tests GENORISE
Maker
CELL BIOLABS
Cat.No.
CBA-301
Product
StemTAG™ Alkaline Phosphatase Activity Assay Kit, Colorimetric
Size
100 assays
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
CBA-306
Product
StemTAG™ Alkaline Phosphatase Staining Kit (Purple)
Size
100 assays
Qty
Data Sheet
MSDS
Maker
CELL BIOLABS
Cat.No.
CBA-300
Product
StemTAG™ Alkaline Phosphatase Staining Kit (Red)
Size
100 assays
Qty
Data Sheet
MSDS
Maker
ARIGO
Cat.No.
ARG81239
Product
Alkaline Phosphatase Activity Assay Kit (Colorimetric)
Size
100 assay
Qty
Data Sheet
Maker
ARIGO
Cat.No.
ARG81296
Product
ALP / Alkaline Phosphatase Assay Kit
Size
250 tests
Qty
Data Sheet
Maker
GENORISE
Cat.No.
GR107015
Product
Genorise® Alkaline Phosphatase Activity Colorimetric Assay Kit
Size
100 tests
Qty
Maker
GENORISE
Cat.No.
GR107016
Product
Genorise® Alkaline Phosphatase Activity Fluorometric Assay Kit
Size
100 tests
Qty
Maker
GENORISE
Cat.No.
GR107045
Product
Genorise® Alkaline Phosphatase Staining Kit
Size
100 tests
Qty

추천제품

자료

  • Culturing ES and iPS cells on Biolaminin 511

    Culturing ES and iPS cells on Biolaminin 511 이미지

    [BIOLAMINA]

    Human recombinant Biolaminin 511로 ES 및 iPSC를 배양하는 방법입니다.

웨비나/Video

TOP

제품 문의

0.5 ml Elite Pre-stained Protein Ladder (2 x 0.25 ml) PAL-EPL-500 0.5ml 500
Maker
Cat.No.
Product
Size
Qty
Data Sheet
MSDS

로그인

로그인