

EzWay[™] Taq PCR MasterMix

1. Catalog No.

Cat. No	Product	Size
K0564002	EzWay™ Taq PCR MasterMix (2x)	1ml
K0564003	EzWay™ Taq PCR MasterMix (2x)	5ml (1ml x 5)

2. Storage

1 year at -20°C (The product is able to be shipped on blue ice and should be stored immediately at -20°C.)

3. Contents

Component	Cat.No	K0564002	K0564003
2X EzWay™ Taq	K0564002	O (1.0ml)	-
PCR MasterMix	K0564003	-	O (5.0ml)
4X Magic Buffer (Only use for High G+C content)	K0561031	O (1.0ml)	O (5.0ml)

4. Description The EzWay[™] Taq PCR MasterMix provides robust PCR performance in a wide range of PCR applications without the need for time-consuming optimization. Only primers and template DNA are added to prepare the final PCR. The EzWay[™] Taq PCR MasterMix contributes to highly reproducible PCR by reducing pipetting errors and miscalculation. The EzWay[™] Taq PCR MasterMix can be stored at 2-8°C allowing even faster PCR setup by eliminating thawing time.

- Premixed solution of Taq DNA Polymerase, Taq PCR buffer, dNTPs, MgCl₂, dye and additives in a 1.5ml tube
- Source: E. coli, recombinant gene from Thermus aquaticus
- Amplification range:
 - Lambda DNA: up to 6Kb (Max. 12Kb)
 - Human genomic DNA: up to 2Kb (Max. 4Kb)
- Customer's optional aliquot
- A time saving preparation
- Reduced risk of handling errors and contamination
- $5' \rightarrow 3'$ exonuclease activity
- Extra A addition (terminal transferase) activity
- Easy handling and shipping due to temperature stability

5. Application

- Amplification of genomic DNA and cDNA targets up to 3kb long
- GC-rich sequences or secondary structures
- TA Cloning
- Differential Display
- Degenerate PCR

6. PCR Amplification

1. Add the following reagents to a thin-walled PCR microcentrifuge tube or plate.

Component	Final Concentration	Volume/	reaction
2x EzWay™ Taq PCR MasterMix	1X	10 µL	25 µL
5' Primer	0.1 - 0.5 uM	Variable	Variable
3' Primer	0.1 - 0.5 uM	Variable	Variable
Distilled water		Variable	Variable
Template		Variable	Variable
Total reaction volu	20 µL	50 μL	

- 2. Mix gently.
- 3. When using a thermal cycler without a heated lid, add approximately 100ul of mineral oil on top of the mixture.
- 4. Perform thermal cycling.

Step		Temp.	Time	Cycles
Initial Denaturation		94°C	2-5 min	1
Cycling	Denaturation	94°C	0.5-1 min	
	Annealing	50-68°C	0.5-1 min	25-35
	Extension	72°C	1 min (~1kb/imin)	
Final Extension	on	72°C	10 min	1

Note:

- a. Primers should be 15 to 30 bases in length and near 50% G+C content.
- b. <u>Magic Buffer is not necessary for normal G+C content. It will improve DNA</u> <u>amplification of templates that have a high G+C content and a high degree of</u> <u>secondary structure.</u> We recommend that the volume added should not exceed 25 % (v/v) of final PCR volume.
- 5. The amplified DNA can be detected by various electrophoresis techniques. The most common techniques are agarose or polyacrylamide gel electrophoresis depending on the size of the amplicon.